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Abstract—Power spectrum density (PSD) of electro-
encephalogram (EEG) signals is a widely used feature for Brain
Computer Interfaces (BCIl). Usually, PSD features are
integrated over different frequency bands, such as delta, theta,
alpha, beta, gamma, which are based on well-established
interpretations of EEG signals in prior experimental and
clinical contexts. However, these predefined frequency bands do
not necessarily relate to the optimal features for various BCI
applications. In this paper, we propose an alternative feature
dimensionality reduction method, which automatically
determines the optimal number and the range of frequency
bands. We applied the proposed method on EEG classification
in the context of Augmented Cognition (AugCog) using BCI.
The experimental results show that the proposed method can
extract more robust features than features manually extracted
from predefined frequency bands.

I. INTRODUCTION

RAIN Computer Interfaces (BCI) refer to a family of

designs that facilitate direct interactions between human
brains and computers. Unlike traditional human computer
interfaces (HCI), BCIl offers a new, non-muscular
communication and control channel, which makes it
particularly useful in some applications, such as assistive
technologies for the disabled. In recent years, a new BCI
application emerged: augmented cognition (AugCog). The
aim of AugCog is to enhance the subject’s performance based
on the evaluation of the cognitive state using physiological
signals including EEG [1-3]. For example, in an arbitrary
operational context, the AugCog system can assess the
human operator’s mental states, and the large-scale
computer/machinery system can self-organize the interface
(presentation of information to the operator), as well as the
work load imposed on the operator, in order to maximize his
overall task performance. The AugCog concept has attracted
increasing attention and is a potentially very beneficial
application of BCI technology to healthy humans in their
daily activities.
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A typical BCI system contains four parts: brain activity
acquisition, signal preprocessing, feature extraction, and
classification/estimation of brain state. Modern noninvasive
BCI applications use electroencephalography (EEG) to
measure brain activities, because compared with other
measurement modalities, such as MEG, fMRI, and invasive
microelectrodes, EEG is economical, convenient, and has
very good time resolution. Typically, EEG signals are noisy,
contaminated with environmental and muscle motion artifacts,
nonstationary, vary from subject to subject and from session
to session for the same subject. These characteristics of EEG
recordings create a significantly challenging problem for BCI
researchers. Many well established signal processing and
machine learning methods have been applied to BCI [4, 5];
however, more sophisticated algorithms are desired to make
BCI systems practical.

In a BCI system, feature extraction and dimensionality
reduction plays a critical role. A robust and stable feature set
is desired for better classification performance. Usually, EEG
features can be extracted in time domain, such as P300 or
N400 waveforms, or in frequency domain, such as the FFT or
wavelet coefficients. Most BCI applications, specifically
ones that require continuous mental state estimation rather
than even-related response detection, employ
frequency-domain features, such as the power spectrum
density (PSD). A widely used PSD estimation approach is to
use a sliding window (for example the Welch window [6]),
and the estimated PSD is integrated over several predefined
frequency bands, which are based on prior experimental and
clinical EEG-based studies [7]. However, these predefined
frequency bands can not be guaranteed to yield features that
are optimal for the specific application, because various
complex mental tasks may involve contributing factors across
different frequency bands, or exhibit different characteristics
within these bands. In this situation, an adaptive approach is
more desirable to determine the relationship among
frequency components.

Many researchers have studied how to select frequency
components from EEG signals. Pregenzer and Pfurtscheller
[8] used Distinctive Sensitive Learning Vector Quantization
to analyze and rank 40 integer frequency components from 2
EEG channels. Lan and colleagues [1] developed a mutual
information maximization approach for feature ranking and
EEG channel selection based on PSD features. However, few
studies have been performed on how to adaptively and
optimally segment the EEG activity into coherent frequency
bands.
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Fig. 1. Frequency Clustering Feature Extraction System Block Diagram.

Due to the standard windowing technique for PSD
estimation and smoothness of expected PSD activity across
frequency, it is expected that the optimal task-relevant
frequency bands will consist of compactly connected
neighboring frequency intervals (determined by the
frequency resolution of the PSD). The beginning and
endpoint of each band, however, must be determined
adaptively by investigating the statistical similarity between
the frequency intervals that will be potentially integrated in
the same frequency band. Note that intuitively, we should
cluster together only the frequency intervals that carry
statistically similar information. This will increase the
signal-to-noise ratio of the generated feature after integration
of PSD over the band and will potentially improve
classification accuracy. Consequently, we first need to
measure how statistically similar two frequency intervals are.
The simplest such measure in statistics is the correlation
coefficient between them. For the rest of the paper, we will
assume that the frequency resolution is 1Hz, thus each
frequency interval will be represented by the integer
frequency value that the interval is centered at. If two integer
frequency components are highly correlated, then they carry
redundant information and the combined information is little
more than each individual frequency. Thus, combining these
correlated frequency components together (for example by
averaging, which is what integration does essentially) instead
of using them as separate features, will reduce feature
dimensionality without sacrificing significant amounts of
novel information. In the finite training data case, the
generalization benefits one would obtain through reduction
in dimensionality will typically surpass the losses incurred
due to eliminated information. A more general measure of
similarity would be mutual information between pairs of
frequencies, however, upon inspection, the authors have
determined that the pairwise mutual information (estimated
nonparametrically using kernel density estimation) and
correlation  coefficient matrices for our particular
experimental datasets revealed similar clustering structures.
Therefore, for the rest of the paper, we focus on correlation
coefficients as the primary similarity measure, and adaptively
identify the most coherent frequency bands by clustering. The
mathematical motivation for the use of correlation coefficient

Fig. 2. A typical correlation matrix for one EEG channel

will be detailed in the next section.

Il. METHOD

The EEG measurements are collected using wireless EEG
cap as the subjects are engaged in various mental tasks with
different difficulty levels (we will describe the details in
section I1). Our goal is to design a classification system that
can discriminate between various existing tasks and their
difficulty levels using the EEG measurements. The block
diagram of the designed system that incorporates the
proposed automatic frequency band segmentation method is
shown in Fig. 1. After preprocessing, including filtering and
artifact removal, we get clean multi-channel EEG signals.
The integer PSD frequency components are estimated using
the Welch method [6] from 1 to 40 Hz. We measure the
distance between pairwise frequency components using the
correlation coefficient matrix. Given the PSD E(f) at each
integer frequency f from 1 to 40 Hz, we construct the
frequency-correlation matrix C:

C=|-- C(,j) - Q

Each element of C is the absolute correlation coefficient
between E(i) and E(j):

c( j):|E[(E(i)—ui)(E(j)—ﬂj)]l )

’ Std[E(i)]- Std[E())]

where £ denotes E[E(i)]. If the correlations between pairwise
frequency components are very strong (close to 1) or very
weak (close to 0), then the correlation matrix C
approximately becomes block-diagonal. A typical correlation
matrix for one EEG channel is shown in Fig. 2.

Once we obtain the correlation matrix, we can employ
similarity-based clustering algorithms on this matrix to
automatically segment the frequency bands. Many existing
spectral clustering algorithms can achieve this goal [9-12].
Spectral clustering algorithms in the literature typically deal
with similarity matrices formed between pairs of data samples




and for large data sets with N samples, the similarity matrix
becomes NxN. Note that the matrix is essentially a fully
connected weighted graph between the nodes (the samples in
spectral clustering or frequencies in our case). Therefore, the
procedure of cutting the weakest connection and then
searching for the remaining connected components is not
feasible for very large N. In our application, however, the size
of the correlation matrix, determined by the frequency
resolution of the PSD estimator, is quite small; therefore, we
opt for this straightforward procedure and employ the well
known connected component search algorithm [13].

Suppose that, after clustering, we get a group of
frequencies — fi, f, ..., fi— which have strong correlation.
Following the typical assumption of a linear generative model
for the EEG measurements at each electrode, we can consider
specific frequencies to correspond to a certain brain signature,
a common source denoted as g. Consequently, this underlying
common feature is assumed to take various realizations at
each frequency as follows:

g(f;)=g+n(f;) €))
where n(f;) is background and measurement noise. Note that
this is a simplified linear model and more elaborate linear or
nonlinear generative mechanisms will be assumed and tested
in future work. Given the model in (3), the common source is
extracted by an appropriate weighted average scheme:

I
g~ wig(f;) (4)
i=1
to maximize classification performance. For simplicity, we
select w;=1/1 and observe this value to work well in practice.
However, in general optimization of these parameters could
be necessary. Based on the model in (3), we can see that the
weighted average feature g improves the signal-to-noise ratio,
thus resulting in a better feature.
The frequency clustering feature extraction method is
summarized below:

1. Estimate PSD at integer frequencies from artifact-free EEG.

2. For each EEG channel, calculate the correlation matrix using
equations (1) and (2).

3. For each channel, find a threshold such that when all entries
of C below the threshold are zeroed, the connected
components algorithm yields a predetermined K number of
clusters.

4. Integrate signal power in each frequency band as in (4)
determined for each channel to obtain the reduced feature set.

I1l. EXPERIMENTS AND RESULTS

A. Playing a Video Game

We applied the proposed automatic frequency band
segmentation method to EEG data collected using a wireless
EEG cap manufactured by Advanced Brain Monitoring
(ABM) [14] with 6 channels: C3, CzPO, F3, FzPO, P4, POz.
In the experiments, the subjects are asked to play a video
game with varying difficult levels, which correspond to the
high and low workloads. EEG signals were collected from 5
subjects and each subject performed 2 sessions. The sampling
rate of the EEG is 256Hz. The PSD estimates are offered by

the ABM system using the Welch sliding window (which also
includes bandpass and adaptive filtering for noise and artifact
removal). A frequency resolution of 1Hz is assumed for the
PSD, so energy estimates in 1Hz frequency bins centered at
integer frequencies from 1Hz to 40Hz are obtained.

The optimal number of frequency clusters for each EEG
channel is acquired by cross-validation procedure. Data from
each session is partitioned into 5 pieces for 5-fold
cross-validation. We employ a Gaussian Mixture Model
(GMM) based classifier that generates cognitive load
estimates at 10Hz. These estimates are passed through a
2-second-long causal median filter to eliminate occasional
outliers and to obtain a smooth cognitive state estimation
sequence. The average and standard deviation of correct
classification probability is used as the cross-validation
measure for order selection in identifying the number of
frequency bands.

Ideally, one should employ cross-validation to select the
number of clusters for each EEG channel as well as the model
order for the GMM classifier. For a C-channel EEG recording
if we evaluate K different frequency cluster models (that is for
each channel evaluate the performance of 1 to K clusters) and
M different GMM orders (1 to M Gaussian components), the
computational complexity of the cross-validation becomes
K“MN. The factor N is the number of random initializations
of the EM algorithm to find the global optimum for GMM
training. As this complexity tends to increase quite fast, we
simplify the search by assuming a predetermined order (M=4)
for the GMM classifiers, based on our previous experience
with datasets collected using this equipment in similar
experimental setups. We also assume that each EEG channel
uses the same number of frequency bands, thus the
power-dependency in C is eliminated. The computational
complexity then reduces to KN 5-fold cross-validation
procedures. The overall experimental procedure is:

1) For each session of data, select a random 5-fold partition.
2) Pick 4 for training (TRAIN) and 1 for testing (TEST)
3) For K from 2 to 8 perform the following:
- Obtain the reduced dimension features corresponding to the
K clusters determined by the segmentation algorithm.
- On the reduced dimension features, train 100 randomly
initialized GMM classifiers.
- Pick the GMM that maximizes the classification
performance on TRAIN.
4) Go to step 2 and repeat until all partitions are used as TEST.
5) Calculate the average and standard deviation of classification
error on TEST for the 5 partitions for each K using the best
GMMs.
8) Repeat steps 2 to 5 for each session.

The features obtained by automatic segmentation of
frequency bands are compared to features obtained by
selecting 5 frequency bands in accordance with the clinical
and cognitive science literature. These predetermined
frequency bands are 1-3Hz, 4-7Hz, 8-12Hz, 13-30Hz,
31-40Hz. The PSD features are extracted by integrating over
these frequency bands, which generate 5 features for each



TABLE I
MEAN AND STANDARD DEVIATION OF CLASSIFICATION RATE FOR DIFFERENT
DATA SESSIONS

Number of clusters per EEG channels

Manual| 2 3 4 5 6 7 8
Session 0.78 | 0.79 | 0.79 | 0.70 | 0.75 | 0.74 | 0.74 | 0.75
1 +/- +/- +/- +/- +/- +/- +- | +-
0.21 | 013 | 0.18 | 0.19 | 0.18 | 0.15 | 0.22 | 0.23
Session 0.74 | 0.70 | 0.71 | 0.68 | 0.66 | 0.69 | 0.69 | 0.65
5 +/- +/- +/- +/- +/- +/- +- | +-
0.18 | 0.16 | 0.09 | 0.20 | 0.16 | 0.15 | 0.16 | 0.11
Session 0.61 | 0.66 | 0.66 | 0.71 | 0.60 | 0.63 | 0.65 | 0.62
3 +/- +/- +/- +/- +/- +/- +- | +-
0.13 | 0.11 | 0.05 | 0.10 | 0.11 | 0.10 | 0.11 | 0.07
Session 053 | 054 | 051 | 0.56 | 0.62 | 0.53 | 0.49 | 0.46
4 +/- +/- +/- +/- +/- +/- +- | +-
0.09 | 0.10 | 0.12 | 0.12 | 0.15 | 0.08 | 0.12 | 0.11
Session 0.62 | 0.60 | 0.63 | 0.60 | 0.58 | 0.59 | 0.64 | 0.62
5 +/- +/- +/- +/- +/- +/- +- | +-
0.11 | 0.13 | 0.12 | 0.09 | 0.05 | 0.06 | 0.05 | 0.04

Session 0.46 | 0.53 | 0.48 | 0.52 | 0.49 | 0.48 | 0.53 | 0.45
6 +/- +/- +/- +/- +/- +/- +- | +-
0.05 | 0.10 | 0.09 | 0.07 | 0.11 | 0.10 | 0.09 | 0.06

Session 0.60 | 0.60 | 0.5i | 0.62 | 0.58 | 0.55 | 0.57 | 0.53
7 +/- +/- +/- +/- +/- +/- +- | +-
0.10 | 0.06 | 0.06 | 0.15 | 0.10 | 0.07 | 0.10 | 0.12

Session 052 | 046 | 052 | 059 | 0.61 | 0.55 | 0.45|0.47
8 +/- +/- +/- +/- +/- +/- +- | +-
0.07 | 0.11 | 0.16 | 0.06 | 0.12 | 0.08 | 0.12 | 0.08

Session 056 | 0.56 | 0.54 | 0.52 | 0.53 | 0.59 |0.59|0.58
9 +/- +/- +/- +/- +/- +/- +- | +-
0.07 | 0.04 | 0.07 | 0.07 | 0.09 | 0.09 |0.070.09
Session 0.64 | 060 | 0.58 | 0.57 | 0.58 | 0.58 | 0.62 | 0.59
10 +/- +/- +/- +/- +/- +/- +- | +-
0.09 | 0.13 | 0.10 | 0.08 | 0.13 | 0.07 | 0.10 | 0.07

The second column presents the results for manually predefined frequency
bands; columns 3 to 9 correspond to K equals 2 to 8 automatically determined
frequency bands. The results are shown in the form mean+/-std.

EEG channel. The classifiers are trained on these features
using Monte Carlo initialization and the best performing
classifiers are selected in the 5-fold cross-validation scheme.
The mean and standard deviation of correct classification rate
for each session for different number of clusters per channel
are listed in Table 1.

The performance comparison between automatic
frequency clustering and manually predefined frequency
bands is shown in Fig. 3. Experimental results in Table 1 and
Fig. 3 show that in 8 of 10 sessions, the proposed feature
extraction method outperforms the previously used
predefined frequency bands for the proper number of clusters
that one would select in cross-validation.

B. Benchmark Mental Task

In this experiment, EEG data was collected using a
Biosemi Active Two system [18] while 3 subjects executed
the Larson task [19]. In the Larson task, the subjects are
required to maintain a mental count according to the
presented configuration of images on the monitor. The
combination of mental activities during this task includes
Attention, Encoding, Rehearsal, Retrieval, and Match. The
complexity of the task is divided into two classes, low and
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Fig. 3. Performance comparison between automatic frequency band
segmentation (for 2 to 8 bands) and manually predefined frequency bands in
terms of correct classification probability (between 2 classes). The latter is
depicted as a separate error bar located at x-axis value of 1.

high workloads, which depend on the inter-stimuli interval.
The Biosemi system uses a 30 channel EEG cap and eye
electrodes. Vertical and horizontal eye movements and blinks
were recorded with electrodes below and lateral to the left eye.
EEG is sampled and recorded at 256Hz from 30 channels.



TABLEII
MEAN AND STANDARD DEVIATION OF CLASSIFICATION RATE FOR DIFFERENT
SUBJECTS IN LARSON TASK

Number of clusters per EEG channels

Manual| 2 3 4 5 6 7 8
Subject| 091 | 0.96 | 0.96 | 0.77 | 0.87 | 0.67 | 0.5 | 0.5
1 +/- +- +/- +/- +/- +/- +- | +l-

0.04 | 0.01 | 0.02 | 0.22 | 0.11 | 0.08 0 0
Subject| 0.80 | 0.88 | 0.86 | 0.85 | 0.88 | 0.68 | 0.57 | 0.63
2 +/- +- +/- +/- +/- +/- +- | +l-
0.06 | 0.15 | 0.13 | 0.11 | 0.06 | 0.04 | 0.15|0.12
Subject| 0.63 | 0.65 | 0.63 | 0.67 | 0.56 | 0.54 | 0.49 | 0.53
3 +/- +- +/- +/- +/- +/- +- | +l-
0.15 | 0.12 | 0.08 | 0.09 | 0.10 | 0.06 | 0.05 | 0.09

The second column presents the results for manually predefined frequency
bands; columns 3 to 9 correspond to K equals 2 to 8 automatically determined
frequency bands. The results are shown in the form mean+/-std.

EEG signals are preprocessed to remove eye blinks using an
adaptive linear filter based on the Widrow-Hoff training rule
(LMS) [20]. Information from the VEOGLB ocular reference
channel was used as the noise reference source for the
adaptive ocular filter. DC drifts were removed using high
pass filters (0.5Hz cut-off). A band pass filter (2Hz-50Hz)
was also employed, as this interval is generally associated
with cognitive activity. The PSD was estimated for integral
frequency from 1 to 40 Hz using Welch method [6].

We repeat the same procedure described in the previous
experiment. The mean and standard deviation of correct
classification rate for each subject for different number of
clusters per channel are listed in Table 2. The performance
comparison between automatic frequency clustering and
manually predefined frequency bands is shown in Fig. 4.
Experimental results in Table 2 and Fig. 4 show that for the
Larson task, the proposed feature extraction method
outperforms the previously used predefined frequency bands
for all subjects.

1V. CONCLUSION

In this paper, we proposed a feature dimensionality
reduction method for BCI systems utilizing PSD features.
The method is evaluated on EEG data collected in the
AugCog context. Although we have focused on the specific
application and feature set, the principle of reducing the
feature dimensionality through automatic clustering based on
statistical similarity can be applied to arbitrary feature sets in
any classification problem. With suitable pairwise similarity
metrics, the method is expected to provide a practically
feasible alternative to feature selection and projection
techniques that rely on high dimensional statistical quantities,
which require an exponentially growing number of samples
for accurate estimation.

In future work, we will investigate more elaborate
generative models for highly correlated pair of features (such
as arbitrary nonlinear dependencies) and employ higher order
statistical measures (such as mutual information) to
determine semi-independent clusters of features. The
procedure will also be tested on benchmark pattern
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recognition datasets.
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