
 
 

 

  

Abstract—Power spectrum density (PSD) of electro- 
encephalogram (EEG) signals is a widely used feature for Brain 
Computer Interfaces (BCI). Usually, PSD features are 
integrated over different frequency bands, such as delta, theta, 
alpha, beta, gamma, which are based on well-established 
interpretations of EEG signals in prior experimental and 
clinical contexts. However, these predefined frequency bands do 
not necessarily relate to the optimal features for various BCI 
applications. In this paper, we propose an alternative feature 
dimensionality reduction method, which automatically 
determines the optimal number and the range of frequency 
bands. We applied the proposed method on EEG classification 
in the context of Augmented Cognition (AugCog) using BCI. 
The experimental results show that the proposed method can 
extract more robust features than features manually extracted 
from predefined frequency bands. 

I. INTRODUCTION 
RAIN Computer Interfaces (BCI) refer to a family of 
designs that facilitate direct interactions between human 

brains and computers. Unlike traditional human computer 
interfaces (HCI), BCI offers a new, non-muscular 
communication and control channel, which makes it 
particularly useful in some applications, such as assistive 
technologies for the disabled. In recent years, a new BCI 
application emerged: augmented cognition (AugCog). The 
aim of AugCog is to enhance the subject’s performance based 
on the evaluation of the cognitive state using physiological 
signals including EEG [1-3].  For example, in an arbitrary 
operational context, the AugCog system can assess the 
human operator’s mental states, and the large-scale 
computer/machinery system can self-organize the interface 
(presentation of information to the operator), as well as the 
work load imposed on the operator, in order to maximize his 
overall task performance. The AugCog concept has attracted 
increasing attention and is a potentially very beneficial 
application of BCI technology to healthy humans in their 
daily activities. 
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A typical BCI system contains four parts: brain activity 
acquisition, signal preprocessing, feature extraction, and 
classification/estimation of brain state. Modern noninvasive 
BCI applications use electroencephalography (EEG) to 
measure brain activities, because compared with other 
measurement modalities, such as MEG, fMRI, and invasive 
microelectrodes, EEG is economical, convenient, and has 
very good time resolution. Typically, EEG signals are noisy, 
contaminated with environmental and muscle motion artifacts, 
nonstationary, vary from subject to subject and from session 
to session for the same subject. These characteristics of EEG 
recordings create a significantly challenging problem for BCI 
researchers. Many well established signal processing and 
machine learning methods have been applied to BCI [4, 5]; 
however, more sophisticated algorithms are desired to make 
BCI systems practical. 

In a BCI system, feature extraction and dimensionality 
reduction plays a critical role. A robust and stable feature set 
is desired for better classification performance. Usually, EEG 
features can be extracted in time domain, such as P300 or 
N400 waveforms, or in frequency domain, such as the FFT or 
wavelet coefficients. Most BCI applications, specifically 
ones that require continuous mental state estimation rather 
than even-related response detection, employ 
frequency-domain features, such as the power spectrum 
density (PSD). A widely used PSD estimation approach is to 
use a sliding window (for example the Welch window [6]), 
and the estimated PSD is integrated over several predefined 
frequency bands, which are based on prior experimental and 
clinical EEG-based studies [7]. However, these predefined 
frequency bands can not be guaranteed to yield features that 
are optimal for the specific application, because various 
complex mental tasks may involve contributing factors across 
different frequency bands, or exhibit different characteristics 
within these bands. In this situation, an adaptive approach is 
more desirable to determine the relationship among 
frequency components. 

Many researchers have studied how to select frequency 
components from EEG signals. Pregenzer and Pfurtscheller 
[8] used Distinctive Sensitive Learning Vector Quantization 
to analyze and rank 40 integer frequency components from 2 
EEG channels. Lan and colleagues [1] developed a mutual 
information maximization approach for feature ranking and 
EEG channel selection based on PSD features. However, few 
studies have been performed on how to adaptively and 
optimally segment the EEG activity into coherent frequency 
bands. 
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Due to the standard windowing technique for PSD 
estimation and smoothness of expected PSD activity across 
frequency, it is expected that the optimal task-relevant 
frequency bands will consist of compactly connected 
neighboring frequency intervals (determined by the 
frequency resolution of the PSD). The beginning and 
endpoint of each band, however, must be determined 
adaptively by investigating the statistical similarity between 
the frequency intervals that will be potentially integrated in 
the same frequency band. Note that intuitively, we should 
cluster together only the frequency intervals that carry 
statistically similar information. This will increase the 
signal-to-noise ratio of the generated feature after integration 
of PSD over the band and will potentially improve 
classification accuracy. Consequently, we first need to 
measure how statistically similar two frequency intervals are. 
The simplest such measure in statistics is the correlation 
coefficient between them. For the rest of the paper, we will 
assume that the frequency resolution is 1Hz, thus each 
frequency interval will be represented by the integer 
frequency value that the interval is centered at. If two integer 
frequency components are highly correlated, then they carry 
redundant information and the combined information is little 
more than each individual frequency. Thus, combining these 
correlated frequency components together (for example by 
averaging, which is what integration does essentially) instead 
of using them as separate features, will reduce feature 
dimensionality without sacrificing significant amounts of 
novel information. In the finite training data case, the 
generalization benefits one would obtain through reduction 
in dimensionality will typically surpass the losses incurred 
due to eliminated information. A more general measure of 
similarity would be mutual information between pairs of 
frequencies, however, upon inspection, the authors have 
determined that the pairwise mutual information (estimated 
nonparametrically using kernel density estimation) and 
correlation coefficient matrices for our particular 
experimental datasets revealed similar clustering structures. 
Therefore, for the rest of the paper, we focus on correlation 
coefficients as the primary similarity measure, and adaptively 
identify the most coherent frequency bands by clustering. The 
mathematical motivation for the use of correlation coefficient 

will be detailed in the next section. 

II. METHOD 
The EEG measurements are collected using wireless EEG 

cap as the subjects are engaged in various mental tasks with 
different difficulty levels (we will describe the details in 
section III). Our goal is to design a classification system that 
can discriminate between various existing tasks and their 
difficulty levels using the EEG measurements. The block 
diagram of the designed system that incorporates the 
proposed automatic frequency band segmentation method is 
shown in Fig. 1. After preprocessing, including filtering and 
artifact removal, we get clean multi-channel EEG signals. 
The integer PSD frequency components are estimated using 
the Welch method [6] from 1 to 40 Hz. We measure the 
distance between pairwise frequency components using the 
correlation coefficient matrix. Given the PSD E(f) at each 
integer frequency f from 1 to 40 Hz, we construct the 
frequency-correlation matrix C: 
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Each element of C is the absolute correlation coefficient 
between E(i) and E(j): 
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where µi denotes E[E(i)]. If the correlations between pairwise 
frequency components are very strong (close to 1) or very 
weak (close to 0), then the correlation matrix C 
approximately becomes block-diagonal. A typical correlation 
matrix for one EEG channel is shown in Fig. 2. 
 Once we obtain the correlation matrix, we can employ 
similarity-based clustering algorithms on this matrix to 
automatically segment the frequency bands. Many existing 
spectral clustering algorithms can achieve this goal [9-12]. 
Spectral clustering algorithms in the literature typically deal 
with similarity matrices formed between pairs of data samples 
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and for large data sets with N samples, the similarity matrix 
becomes N×N. Note that the matrix is essentially a fully 
connected weighted graph between the nodes (the samples in 
spectral clustering or frequencies in our case). Therefore, the 
procedure of cutting the weakest connection and then 
searching for the remaining connected components is not 
feasible for very large N. In our application, however, the size 
of the correlation matrix, determined by the frequency 
resolution of the PSD estimator, is quite small; therefore, we 
opt for this straightforward procedure and employ the well 
known connected component search algorithm [13]. 

Suppose that, after clustering, we get a group of 
frequencies ⎯  f1, f2, …, fl ⎯ which have strong correlation. 
Following the typical assumption of a linear generative model 
for the EEG measurements at each electrode, we can consider 
specific frequencies to correspond to a certain brain signature, 
a common source denoted as g. Consequently, this underlying 
common feature is assumed to take various realizations at 
each frequency as follows: 
 )()( ii fngfg +=  (3) 
where n(fi) is background and measurement noise. Note that 
this is a simplified linear model and more elaborate linear or 
nonlinear generative mechanisms will be assumed and tested 
in future work. Given the model in (3), the common source is 
extracted by an appropriate weighted average scheme: 
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to maximize classification performance. For simplicity, we 
select wi=1/l and observe this value to work well in practice. 
However, in general optimization of these parameters could 
be necessary. Based on the model in (3), we can see that the 
weighted average feature g improves the signal-to-noise ratio, 
thus resulting in a better feature. 
 The frequency clustering feature extraction method is 
summarized below: 

1. Estimate PSD at integer frequencies from artifact-free EEG. 
2. For each EEG channel, calculate the correlation matrix using 

equations (1) and (2). 
3. For each channel, find a threshold such that when all entries 

of C below the threshold are zeroed, the connected 
components algorithm yields a predetermined K number of 
clusters. 

4. Integrate signal power in each frequency band as in (4) 
determined for each channel to obtain the reduced feature set.

III. EXPERIMENTS AND RESULTS 

A. Playing a Video Game 
We applied the proposed automatic frequency band 

segmentation method to EEG data collected using a wireless 
EEG cap manufactured by Advanced Brain Monitoring 
(ABM) [14] with 6 channels: C3, CzPO, F3, FzPO, P4, POz. 
In the experiments, the subjects are asked to play a video 
game with varying difficult levels, which correspond to the 
high and low workloads. EEG signals were collected from 5 
subjects and each subject performed 2 sessions. The sampling 
rate of the EEG is 256Hz. The PSD estimates are offered by 

the ABM system using the Welch sliding window (which also 
includes bandpass and adaptive filtering for noise and artifact 
removal). A frequency resolution of 1Hz is assumed for the 
PSD, so energy estimates in 1Hz frequency bins centered at 
integer frequencies from 1Hz to 40Hz are obtained. 

The optimal number of frequency clusters for each EEG 
channel is acquired by cross-validation procedure. Data from 
each session is partitioned into 5 pieces for 5-fold 
cross-validation. We employ a Gaussian Mixture Model 
(GMM) based classifier that generates cognitive load 
estimates at 10Hz. These estimates are passed through a 
2-second-long causal median filter to eliminate occasional 
outliers and to obtain a smooth cognitive state estimation 
sequence. The average and standard deviation of correct 
classification probability is used as the cross-validation 
measure for order selection in identifying the number of 
frequency bands. 

Ideally, one should employ cross-validation to select the 
number of clusters for each EEG channel as well as the model 
order for the GMM classifier. For a C-channel EEG recording 
if we evaluate K different frequency cluster models (that is for 
each channel evaluate the performance of 1 to K clusters) and 
M different GMM orders (1 to M Gaussian components), the 
computational complexity of the cross-validation becomes 
KCMN. The factor N is the number of random initializations 
of the EM algorithm to find the global optimum for GMM 
training. As this complexity tends to increase quite fast, we 
simplify the search by assuming a predetermined order (M=4) 
for the GMM classifiers, based on our previous experience 
with datasets collected using this equipment in similar 
experimental setups. We also assume that each EEG channel 
uses the same number of frequency bands, thus the 
power-dependency in C is eliminated. The computational 
complexity then reduces to KN 5-fold cross-validation 
procedures. The overall experimental procedure is: 

1) For each session of data, select a random 5-fold partition. 
2) Pick 4 for training (TRAIN) and 1 for testing (TEST) 
3) For K from 2 to 8 perform the following: 
    -  Obtain the reduced dimension features corresponding to the 

K clusters determined by the segmentation algorithm. 
    - On the reduced dimension features, train 100 randomly 

initialized GMM classifiers. 
    - Pick the GMM that maximizes the classification 

performance on TRAIN. 
4) Go to step 2 and repeat until all partitions are used as TEST.
5) Calculate the average and standard deviation of classification 

error on TEST for the 5 partitions for each K using the best 
GMMs. 

8) Repeat steps 2 to 5 for each session. 
 
The features obtained by automatic segmentation of 

frequency bands are compared to features obtained by 
selecting 5 frequency bands in accordance with the clinical 
and cognitive science literature. These predetermined 
frequency bands are 1-3Hz, 4-7Hz, 8-12Hz, 13-30Hz, 
31-40Hz. The PSD features are extracted by integrating over 
these frequency bands, which generate 5 features for each 



 
 

 

EEG channel. The classifiers are trained on these features 
using Monte Carlo initialization and the best performing 
classifiers are selected in the 5-fold cross-validation scheme. 
The mean and standard deviation of correct classification rate 
for each session for different number of clusters per channel 
are listed in Table 1. 

The performance comparison between automatic 
frequency clustering and manually predefined frequency 
bands is shown in Fig. 3. Experimental results in Table 1 and 
Fig. 3 show that in 8 of 10 sessions, the proposed feature 
extraction method outperforms the previously used 
predefined frequency bands for the proper number of clusters 
that one would select in cross-validation. 

B. Benchmark Mental Task 
In this experiment, EEG data was collected using a 

Biosemi Active Two system [18] while 3 subjects executed 
the Larson task [19]. In the Larson task, the subjects are 
required to maintain a mental count according to the 
presented configuration of images on the monitor. The 
combination of mental activities during this task includes 
Attention, Encoding, Rehearsal, Retrieval, and Match. The 
complexity of the task is divided into two classes, low and 

high workloads, which depend on the inter-stimuli interval. 
The Biosemi system uses a 30 channel EEG cap and eye 
electrodes. Vertical and horizontal eye movements and blinks 
were recorded with electrodes below and lateral to the left eye. 
EEG is sampled and recorded at 256Hz from 30 channels. 

TABLE I 
MEAN AND STANDARD DEVIATION OF CLASSIFICATION RATE FOR DIFFERENT 

DATA SESSIONS 
  Number of clusters per EEG channels 
 Manual 2 3 4 5 6 7 8 

Session 
1 

0.78 
+/- 

0.21 

0.79 
+/- 

0.13 

0.79 
+/- 

0.18 

0.70 
+/- 

0.19 

0.75 
+/- 

0.18 

0.74
+/- 

0.15

0.74
+/-

0.22

0.75
+/-

0.23

Session 
2 

0.74 
+/- 

0.18 

0.70 
+/- 

0.16 

0.71 
+/- 

0.09 

0.68 
+/- 

0.20 

0.66 
+/- 

0.16 

0.69
+/- 

0.15

0.69
+/-

0.16

0.65
+/-

0.11

Session 
3 

0.61 
+/- 

0.13 

0.66 
+/- 

0.11 

0.66 
+/- 

0.05 

0.71 
+/- 

0.10 

0.60 
+/- 

0.11 

0.63
+/- 

0.10

0.65
+/-

0.11

0.62
+/-

0.07

Session 
4 

0.53 
+/- 

0.09 

0.54 
+/- 

0.10 

0.51 
+/- 

0.12 

0.56 
+/- 

0.12 

0.62 
+/- 

0.15 

0.53
+/- 

0.08

0.49
+/-

0.12

0.46
+/-

0.11

Session 
5 

0.62 
+/- 

0.11 

0.60 
+/- 

0.13 

0.63 
+/- 

0.12 

0.60 
+/- 

0.09 

0.58 
+/- 

0.05 

0.59
+/- 

0.06

0.64
+/-

0.05

0.62
+/-

0.04

Session 
6 

0.46 
+/- 

0.05 

0.53 
+/- 

0.10 

0.48 
+/- 

0.09 

0.52 
+/- 

0.07 

0.49 
+/- 

0.11 

0.48
+/- 

0.10

0.53
+/-

0.09

0.45
+/-

0.06

Session 
7 

0.60 
+/- 

0.10 

0.60 
+/- 

0.06 

0.5i 
+/- 

0.06 

0.62 
+/- 

0.15 

0.58 
+/- 

0.10 

0.55
+/- 

0.07

0.57
+/-

0.10

0.53
+/-

0.12

Session 
8 

0.52 
+/- 

0.07 

0.46 
+/- 

0.11 

0.52 
+/- 

0.16 

0.59 
+/- 

0.06 

0.61 
+/- 

0.12 

0.55
+/- 

0.08

0.45
+/-

0.12

0.47
+/-

0.08

Session 
9 

0.56 
+/- 

0.07 

0.56 
+/- 

0.04 

0.54 
+/- 

0.07 

0.52 
+/- 

0.07 

0.53 
+/- 

0.09 

0.59
+/- 

0.09

0.59
+/-

0.07

0.58
+/-

0.09

Session 
10 

0.64 
+/- 

0.09 

0.60 
+/- 

0.13 

0.58 
+/- 

0.10 

0.57 
+/- 

0.08 

0.58 
+/- 

0.13 

0.58
+/- 

0.07

0.62
+/-

0.10

0.59
+/-

0.07
The second column presents the results for manually predefined frequency  
bands; columns 3 to 9 correspond to K equals 2 to 8 automatically determined 
frequency bands. The results are shown in the form mean+/-std. 
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Fig. 3. Performance comparison between automatic frequency band 
segmentation (for 2 to 8 bands) and manually predefined frequency bands in 
terms of correct classification probability (between 2 classes). The latter is 
depicted as a separate error bar located at x-axis value of 1. 



 
 

 

EEG signals are preprocessed to remove eye blinks using an 
adaptive linear filter based on the Widrow-Hoff training rule 
(LMS) [20]. Information from the VEOGLB ocular reference 
channel was used as the noise reference source for the 
adaptive ocular filter. DC drifts were removed using high 
pass filters (0.5Hz cut-off). A band pass filter (2Hz-50Hz) 
was also employed, as this interval is generally associated 
with cognitive activity. The PSD was estimated for integral 
frequency from 1 to 40 Hz using Welch method [6]. 

We repeat the same procedure described in the previous 
experiment. The mean and standard deviation of correct 
classification rate for each subject for different number of 
clusters per channel are listed in Table 2. The performance 
comparison between automatic frequency clustering and 
manually predefined frequency bands is shown in Fig. 4. 
Experimental results in Table 2 and Fig. 4 show that for the 
Larson task, the proposed feature extraction method 
outperforms the previously used predefined frequency bands 
for all subjects. 

IV. CONCLUSION 
 In this paper, we proposed a feature dimensionality 

reduction method for BCI systems utilizing PSD features. 
The method is evaluated on EEG data collected in the 
AugCog context. Although we have focused on the specific 
application and feature set, the principle of reducing the 
feature dimensionality through automatic clustering based on 
statistical similarity can be applied to arbitrary feature sets in 
any classification problem. With suitable pairwise similarity 
metrics, the method is expected to provide a practically 
feasible alternative to feature selection and projection 
techniques that rely on high dimensional statistical quantities, 
which require an exponentially growing number of samples 
for accurate estimation. 

In future work, we will investigate more elaborate 
generative models for highly correlated pair of features (such 
as arbitrary nonlinear dependencies) and employ higher order 
statistical measures (such as mutual information) to 
determine semi-independent clusters of features. The 
procedure will also be tested on benchmark pattern 

recognition datasets. 
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