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Abstract. Independent component analysis is an important statistical tool in 
machine learning, pattern recognition, and signal processing. Most of these 
applications require on-line learning algorithms. Current on-line ICA 
algorithms use the stochastic gradient concept, drawbacks of which include 
difficulties in selecting the step size and generating suboptimal estimates. In 
this paper a recursive generalized eigendecomposition algorithm is proposed 
that tracks the optimal solution that one would obtain using all the data 
observed. 

1   Introduction 

Independent component analysis (ICA) has now established itself as an essential 
statistical tool in signal processing and machine learning, both as a solution to 
problems (such as blind source separation) [1,2] and as a preprocessing instrument 
that complements other pieces of a more comprehensive solution (such as 
dimensionality reduction and feature extraction) [3-5]. All of these applications of 
ICA require on-line learning algorithms that can operate in real-time on contemporary 
digital signal processors (DSP). 

Currently, the on-line ICA solutions are obtained using algorithms designed using 
the stochastic gradient concept (e.g., Infomax [6]), similar to the well-known least-
mean squares (LMS) algorithm [7]. The drawbacks of stochastic gradient algorithms 
in on-line learning include difficulty in selecting the step size for optimal speed 
misadjustment trade-off and suboptimal estimates of the weights given the 
information contained in all the samples seen at any given iteration. 
Recursive least squares (RLS) is an on-line algorithm for supervised adaptive filter 
training, which has the desirable property that the estimated weights correspond to the 
optimal least squares solution that one would obtain using all the data observed so far, 
provided that initialization is done properly [7]. This benefit, of course comes at the 
cost of additional computational requirements compared to LMS. Nevertheless, 
certain applications where an on-line ICA algorithm that tracks the optimal solution 
one would have obtained using all samples observed up to that point in time would be 
beneficial. To this end, we derive a recursive generalized eigendecomposition (GED) 
based ICA algorithm that is similar to RLS in principle, but solves the simultaneous 



diagonalization problem using second and fourth order joint statistics of the observed 
mixtures. 
The joint diagonalization of higher order statistics have been known to solve the ICA 
problem under the assumed linear mixing model and have led to popular algorithms 
(e.g., JADE [8]). The joint diagonalization problem in ICA is essentially a GED 
problem, a connection which has been nicely summarized in a recent paper by Parra 
and Sajda [9] for various signal models in linear instantaneous BSS; others have 
pointed out this connection earlier as well. The algorithm we develop here is based on 
the non-Gaussian independent sources assumption, with independent and identically 
distributed samples of mixtures (the latter assumption eliminates the need for 
weighted averaging for minimum bias estimation of the expectations). 
In Section 2, we derive the recursive update equations for the required higher order 
statistics and the corresponding optimal ICA solution. In Section 3, we demonstrate 
using Monte Carlo simulations that the algorithm tracks the optimal ICA solution 
exactly when all matrices are initialized to their ideal values and that the algorithm 
converges to the optimal ICA solution when the matrices are initialized to arbitrary 
small matrices (whose bias on the solution should diminish as more samples are 
observed and utilized). 

2   Recursive ICA Algorithm 

The square linear ICA problem is expressed in (1), where X is the n×N observation 
matrix, A is the n×n mixing matrix, and S is the n×N independent source matrix. 
 ASX =  (1) 
Each column of X and S represents one sample of data. If we consider each column as 
a sample in time, (1) becomes: 
 tt Asx =  (2) 
The joint diagonalization of higher order cumulant matrices can be compactly 
formulated in the form of a generalized eigendecomposition problem that gives the 
ICA solution in an analytical form [9]. According to this formulation, under the 
assumption of independent non-Gaussian source distributions the separation matrix W 
is the solution to the following generalized eigendecomposition problem: 
 WΛQWR xx =  (3) 
where Rx is the covariance matrix and Qx is the cumulant matrix estimated using 
sample averages. While any order of cumulants could have been employed, lower 
orders are more robust to outliers and small sample sizes, therefore we focus on the 
fourth order cumulant matrix: Qx=E[xTxxxT]-Rxtr(Rx)-E[xxT]E[xxT]-RxRx. Given the 
sample estimates for these matrices, the ICA solution can be easily determined using 
efficient generalized eigendecomposition algorithms (or the eig command in 
Matlab®). With the assumption of iid samples, expectations reduce to simple sample 
averages, and the estimates of covariance and cumulant matrices are given by (for 
real-valued mixtures) 
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2.1 The Update Equations 
  
Given the estimates in (4), one can define recursive update rules for the estimates of 
the covariance and cumulant matrices R and Q, as well as R-1 and R-1Q for further 
computational savings. The recursive update for the covariance matrix is 

 T
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and the update rule for the cumulant matrix is given by 
  (6) 22)( ttttt tr RRRCQ −−=

where the matrix C is defined as C , and estimating the expectation 
using sample averages as before, it becomes 
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Now, we can define the update rules for C and R2
 to obtain the recursive update for 

the cumulant matrix. The update rule for C is given by 
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The recursive update of R2 can be derived from (5) by squaring both sides. Hence, the 
update rule for R2 becomes 
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where for further computational savings we introduce the vector vt  as 
 ttt xRv 1−=  (10) 
Finally, the update rule for the cumulant matrix Q can be obtained by substituting (5), 
(8), and (9) into (6). Further computational savings can be obtained by iterating R-1 
and R-1Q to avoid matrix multiplications and inversions, each having an O(n3) 
computational load. The reason why we need these two matrices will be clear as we 
proceed to the fixed-point algorithm that solves for the generalized 
eigendecomposition. Employing the matrix inversion lemma, the recursion rule for R-

1 becomes 
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where αt and ut are defined as 
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Here we define the matrix D, the update equation of whom can easily be defined by 
substituting the previously given update equations for R-1 and Q, using (11) and (6). 
  (13) ttt QRD 1−=
 
2.2 Deflation procedure 
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 (a) (b) 
Figure 1. An illustration of the samples (a) from independent uniform
sources (b) after the linear mixing.
the update equations, the aim is to find the optimal solution for the 
omposition for the updated correlation and cumulant matrices in each 
. Recall the original problem given in (3); we need to solve for the weight 

. We will employ the deflation procedure to determine each generalized 
tor sequentially. Every generalized eigenvector wd that is a column of the 
atrix W is a stationary point of the function 
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t can be easily seen by taking the derivative and equating it to zero: 
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nothing but the generalized eigenvalues equation where the eigenvalues are 
es of the objective criterion J(w) given in (14) evaluated at its stationary 
ence, the fixed-point algorithm becomes 

QwR
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xed-point optimization procedure converges to the largest generalized 
tor1 of R and Q, and the deflation procedure is employed to manipulate the 
 such that the obtained matrices have the same generalized eigenvalue and 
tor pairs except the ones that have been determined previously. The larger 
ues are replaced by zeros in each deflation step. Note that in this subsection 
 index is implicit and omitted for notational convenience. While d represents 
nsion index, the deflation procedure employed while iterating the dimensions 

 by 

                                              
est eigenvector is the one that corresponds to the greatest eigenvalue. 
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The deflated matrices are initialized to Q1=Q and R1=R. Obtaining the new matrices 
using deflation, we will employ the same fixed-point iteration procedure given in (16) 
to find the corresponding eigenvector. 

Investigating the fixed-point algorithm in (16), it is clear that iterating R-1 and D as 
suggested earlier will result in computational savings. The deflation rules for these 
matrices can be deduced from (17) easily. The deflation of R-1 is 
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Similarly, the deflation rule for D can be obtained by combining (17) and (18) as 
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For each generalized eigenvector, the corresponding fixed-point update rule then 
becomes as follows: 

 dd
dd

T
d

dd
T
d

d wD
wQw

wRw
w ←  (20) 

Employing this fixed-point algorithm for each dimension and solving for the 
eigenvectors sequentially, one can update the W matrix and proceed to the next time 
update step. In the following section we will present results comparing the original 
GED-ICA algorithm [9] with the results of the proposed recursive GED-ICA 
algorithm. 

3. Experimental Results 

In this section, the results provided by the proposed recursive algorithm will be 
compared with those of the original GED-ICA algorithm. The experiments are done 
on a synthetic dataset, which is simply generated by a linear mixture of independent 
uniform sources. Experiments using mixing matrices with varying condition numbers 
are employed to test the dependency of the tracking performance on the mixture 
conditioning. 

The joint distribution of the sources is presented in Figure 1 for a two-dimensional 
case. Mixing matrices with condition numbers 10 and 100 are employed for the 
mixing and the corresponding results are presented for two cases. In the first case, the 
original GED-ICA is employed on a small initialization data set to obtain ideal initial 
values for all matrices involved, including the eigenvectors. The expected result for 
the first simulation is to observe that the recursive algorithm is capable of tracking the 
result of the original algorithm within a range of small numerical error. In second 
case, these values are initialized to arbitrary small matrices. As increasing number of 
samples are utilized for the matrix updates, the bias of these arbitrary initial 
conditions is expected to decay. The second experiment will allow us to investigate 
this decay process by comparing the biased solution to that of the original GED-ICA 
procedure. 
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e 2. The performances of recursive and the original methods are compared for a
 of condition numbers 10 and 100. Performances and performance differences for

initialization (top and bottom left, accordingly) and random initialization (top and
 right) are shown 
e simulations, the 20 samples have been used for initialization the ideal 
 and for the arbitrary initialization identity matrices with a small variances 
oyed (note that once R and C are initialized to values at the order of 10-6 all 
trices can be determined consistently with the equations). The corresponding 



average tracking results for 2000 samples are shown in Figure 2 for mixing matrix 
condition numbers of 10 and 100. These results are averaged over 100 Monte Carlo 
runs keeping the condition number of the mixture and the joint source distribution 
fixed and randomizing the right and left eigenvectors of the mixing matrix as well as 
the actual source samples using in the sample averages. 

4 Conclusions 

On-line ICA algorithms are essential for may signal processing and machine learning 
applications, where the ICA solution acts as a front-end preprocessor, a feature 
extractor, or a major portion of the solution itself. Stochastic gradient based algorithm 
motivated by various ICA criteria have been utilized successfully in such situations 
and they have the advantage of yielding computationally simple weight update rules. 
On the other hand, they are not able to offer optimal solutions at every iteration. 
In this paper, we derived a recursive ICA algorithm based on the joint diagonalization 
of covariance and fourth order cumulants. The derivation employs the use of the 
matrix inversion lemma and the sample update rules for expectations approximated by 
sample averages. Since the proposed method is the recursive version of the algorithm 
proposed in [9], and it is tracking the optimal solution given by this algorithm in a 
recursive manner, the experimental results section is limited to the comparisons 
between the proposed recursive method and the original algorithm.  
The resulting algorithm, of course, is computationally more expensive than its 
stochastic gradient counterpart. However, it has the ability to converge to and track 
the optimal solution based on this separation criterion in a small number of samples, 
even when initialized to arbitrary matrices. 
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