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Abstract.  The insufficiency of mere second-order 
statistics in many application areas have been 
discovered and more advanced concepts including 
higher-order statistics, especially those stemming from 
information theory like error entropy minimization are 
now being studied and applied in many contexts by 
researchers in machine learning and signal processing. 
The main drawback of using minimization of output 
error entropy for adaptive system training is the 
computational load when fixed-size kernel estimates are 
employed.  Entropy estimators based on sample 
spacing, on the other hand, have lower computational 
cost, however they are not differentiable, which makes 
them unsuitable for adaptive learning. In this paper, a 
nonparametric entropy estimator that blends the 
desirable properties of both techniques in a variable-size 
finite-support kernel estimation methodology. This 
yields an estimator suitable for adaptation, yet has 
computational complexity similar to sample spacing 
techniques. The estimator is illustrated in supervised 
adaptive system training using the minimum error 
entropy criterion. 
 

I. INTODUCTION 
 Since the earlier work of Wiener on adaptive filtering 
mean square error (MSE) has been used as a widely 
accepted criterion for adaptive system training [1,2,3]. 
The main reasons behind this choice are the assumption 
that the real life phenomena can be sufficiently described 
using second order statistics and the analytical and 
computational simplicities of this method. Under 
Gaussianity assumption, MSE, which solely constrains 
second-order statistics, would be capable of extracting all 
possible information from a signal whose characteristics 
are solely defined by its mean and variance. In the 
absence of Gaussianity assumption, especially for non-
linear signal processing, a more suitable approach would 
be to constrain the information content of the signals 
rather than simply their energy. 
 Although Gaussianity assumption has proven to 
provide successful solutions for many practical problems, 
it is evident that this approach needs to be refined while 
dealing with non-linear systems. Moreover, the 
insufficiency of mere second-order statistics in many 
application areas have been discovered and more 
advanced concepts including higher-order statistics, 
especially those stemming from information theory are 

now being studied and applied in many contexts in 
machine learning and signal processing [4,5]. 
 Entropy is introduced by Shannon as a measure of 
the average information in a given probability distribution 
function [6,7]. Entropy, being a functional of the 
probability density function itself, includes all the higher 
order statistical properties defined in probability density 
function. Hence, entropy is superior to MSE as an 
optimality criterion due to the fact that minimizing the 
error entropy constrains all moments of error pdf, not 
only the first and second moments. Besides, using error 
entropy as a criterion for adaptive system training is 
conceptually straightforward. Given the samples of the 
input and output, the entropy of the output error evaluated 
over the training set has to be minimized. Minimizing the 
output error entropy is equivalent to minimizing the 
distance between the probability density functions of the 
desired and output sequences [8]. Specifically, in the case 
of Shannon entropy this corresponds to minimizing the 
Kullback-Leibler divergence. 
 Since analytical data distributions are not available in 
many practical situations, in the plug-in approach to 
nonparametric entropy estimation [9], an estimate of the 
probability density function of the signal is substituted 
into the sample mean approximation for the expectation. 
The non-parametric kernel density estimator (KDE) is 
typically the estimator of choice for this purpose. In 
KDE, the probability density is approximated by a sum of 
kernels whose centers are translated to the sample 
locations. A suitable and commonly accepted kernel 
function is the Gaussian, which is attractive for 
adaptation purposes, because it is continuously 
differentiable and it leads to continuously differentiable 
density estimates. KDE is a consistent estimator and is 
also proven to have a good asymptotic behavior. 
However, nonparametric entropy estimation using KDE 
results in O(N2) complexity, where N is the number of 
samples [8]. Therefore, KDE based adaptation is 
computationally prohibitive for large training sets. On the 
other hand, the density estimators based on sample 
spacing have lower computational cost, O(Nm), where m 
is the neighborhood size [10,11]. However, the results 
provided by these estimators are not differentiable, and 
not suitable for adaptive learning.       
 In this paper we propose a continuously 
differentiable entropy estimation technique based on a 
variable-size finite-support kernel entropy estimator that 



blends the desirable properties of both techniques: 
differentiability and continuity of the kernel estimators 
and the computational simplicity of the sample spacing 
estimators. The derivation of the estimator is motivated 
by a kernel estimate interpretation of the standard sample 
spacing estimates and relaxing the rectangular kernel to a 
smooth finite-support polynomial kernel. In this paper, 
we have utilized a fourth order polynomial as the kernel 
on the support in order to have the least exponential order 
while maintaining smoothness of the derivatives up to 
order two as well as keeping the piecewise nature of the 
kernel to a minimum of pieces. With the reduced 
computational cost, the usage of entropy-based adaptation 
criteria becomes more applicable for large data sets. We 
illustrate the estimator’s suitability in minimum error 
entropy training of adaptive systems. 
 

II. ENTROPY ESTIMATION 
Kernel Estimates: The fixed-size kernel estimates rely 

on the plug-in estimation methodology and the use of 
Parzen windowing (also called KDE). For a suitable 
kernel function K(.), the pdf estimate for a random 
variable e with samples {e1,…,eN} is [12,13] 
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Consequently, the Renyi’s order-α entropy estimate of e 
is found to be [14] 
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Sample Spacing Estimates: The order statistics of a 
sample of a random variable is known to be simply the 
elements of the sample rearranged in a non-decreasing 
order. Consider a random variable e, whose samples are 
denoted by {e1<e2<…<eN}, which are labeled in non-
decreasing order. The 1-spacing estimator of the Shannon 
entropy of e is given by [10,11] 
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It can easily be seen that the sample spacing entropy 
estimator can be derived from a plug-in estimation 
perspective by assuming the following density estimator 
for the order statistics of e: 
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This estimate is generated such that the expected value of 
the probability mass of the two successive elements of a 
sample of a random variable is 1/(N+1) and corresponds 
to assuming uniform kernels with variable size for each 
sample interval. 
 The variance of this estimator can be decreased by a 
factor of m considering successive m-sample intervals 

instead of using each successive sample pair. This is 
known as the m-spacing estimator and it is shown to be a 
consistent estimate of entropy provided that m increases 
with sample size. The latter estimator has a better 
asymptotic behavior compared to the 1-spacing estimator. 
 This approach can be interpreted as a summation of 
uniform density kernels of finite support, where the 
kernels are located at the successive error samples and the 
height of each kernel is determined by the sample spacing 
as in (4), accordingly. Using the above interpretation, we 
can replace each uniform kernel with a continuously 
differentiable kernel to develop a continuously 
differentiable density estimate, which is suitable for 
adaptive learning. 

Variable-Size Finite-Support Kernel Estimates: 
Defining the midpoints of each sample pair {ei,ei+m} as 

ie~ , we obtain the set of kernel center locations as 
}~,,~,~{ 1e 2 mNee −L : 
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By construction, the successive samples of (5) are also in 
a non-decreasing order. Using (5), the probability density 
given in (4) is rewritten as 
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where should be selected for each 
i

Kσ ie~  such that it is 
nonzero in the interval [ei,ei+m] and zero otherwise. While 
the nonzero segment of the kernel can be selected to be 
any suitable smooth function satisfying the required 
boundary conditions, a fourth order polynomial is the 
minimum order and simplest kernel choice that also has 
enough degrees of freedom to meet the boundary and 
smoothness constraints. Hence, we proceed with this 
choice to illustrate the technique:  
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and Ai, the normalization constant can be easily evaluated 
to be 
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in this case. This kernel is continuous up to its fourth 
order derivative with respect to its argument e, which is 
more than enough for the typical first and second order 
iterative learning rules, its width is automatically 
determined from the data eliminating the need to seek an 
optimal kernel size, which is a drawback in fixed-size 
kernel methods, and it has finite support on [ei,ei+m], 



Initialize weights. 
Repeat the following until convergence 

- Select artificial noise power from schedule 
- Add noise to the clean desired output 
- Calculate training set errors from noisy data 
- Sort error samples in ascending order and sort

the corresponding input and hidden layer
activations 

- Evaluate gradient as shown in (12) 
- Perform line search to adjust the step size 
- Update weights 

Table 1. Outline of the algorithm for training MLPs. 

which will lead to the computationally efficient entropy 
estimator that we present next.  
 Given the continuous and differentiable density 
estimate in (6) for e, one can easily write the entropy of 
for this random variable by plugging this estimator in the 
entropy definition, and approximating the expected value 
with a sample mean. To illustrate, we consider Renyi’s 
quadratic entropy: 
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In (10), the last step incorporates the finite-support nature 
of the kernels by removing unnecessary kernel 
evaluations in one of the summations, thus reduces the 
computational requirement by m/N-fold. Substituting (5) 
for ie~ , (7) for , (8) for 

i
Kσ iσ , and (9) for Ai, we get 
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where the entropy is solely defined in terms of the 
available samples with no parameters to adjust except m. 

In the KDE method, in general an infinite support 
kernel such as a Gaussian or a Laplacian density is used, 
since fixed-size finite-support kernels result in a poor 
asymptotic behavior. In this case, however, we started 
from the order-statistics based sample spacing estimator 
and integrated the kernel concept into this well-known 
entropy estimator to rewrite the corresponding density 
estimator as a sum of finite-support kernels, where the 
kernel size is locally adjusted to the data spread through 
the m-neighborhood relation. Selecting m, the number of 
samples in each neighborhood must be based on the total 
number of samples to guarantee asymptotic consistency. 
Typically, in the literature Nm =

)2/3

 is recommended and 
we also employ this formula [11]. This selection satisfies 
limN→∞m=∞ for asymptotic unbiasedness besides the 
asymptotic consistency due to limN→∞m/N=0. The 
parameter m controls the trade-off between the 
computational complexity and the asymptotic behaviour 
as shown above. The computational complexity, which is 
O(Nm), becomes  for the recommended 
selection. For appropriate cases with some a priori 
knowledge about data, one can even choose m as a 
constant value and get O(N) complexity with an 
inconsistent, but computationally more efficient entropy 
estimator. 

(NO

 

III. MINIMUM ERROR ENTROPY CRITERION FOR 
ADAPTIVE LEARNING 

Minimization of output error entropy has been 
shown to be superior to methods based on second-order 
statistics as mentioned before [8,14]. Employing the 
entropy estimate in (11) for adaptive learning, one can 
overcome the main drawback of this procedure: high 
computational complexity. 

Given an adaptive system with weight vector w and 
a training set consisting of input-output pairs, typically 
gradient descent algorithm is utilized, while other 
alternatives such as the Newton method exist. The 
gradient of the error entropy with respect to the weights 
can be obtained by letting ei denote the training error 
samples in (11) and taking the derivative with respect to 
the system parameters. This yields: 
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where V2(e) is the argument of the logarithm in (10), 
which is also called the quadratic information potential 
[14], and ∂yi/∂w denotes the gradient of the adaptive 
system output for the ith sample, which can be evaluated 
for linear filters and standard neural networks easily as 
known from the relevant literature on backpropagation 
[2]. 

Inspecting (11) and (12), one can observe that in the 
ideal case where all error samples approach zero, both the 
objective function H, and its gradient approach -∞. 
While, in practice, perfect zero errors are never achieved, 
and both functions will attain finite values at the optimal 
solution, the performance surface around this solution 
might resemble a funnel resulting in a numerically 
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Figure 2. (a) Mackey-Glass chaotic time series
prediction results  (b) estimation error histogram for
the testing phase 
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Figure 1. Average estimates and standard deviations of
the quadratic entropy estimator in (11) versus sample
size for (a) Gaussian distributed data and (b) uniformly
distributed data. 
unstable gradient descent learning algorithm near the 
solution. This numerical issue can be easily resolved by 
superimposing an artificial measurement noise onto the 
desired output, whose power controls the minimum error 
one can attain. During learning, both the learning rate and 
the artificial noise power can be reduced gradually in 
order to guide the weights to the global optimum 
smoothly. The outline of the algorithm is given in Table 1. 

 
IV. EXPERIMENTAL ERESULTS 

The Entropy Estimator: We demonstrate the 
performance of the entropy estimator on synthetic data 
generated according to unit-variance Gaussian and unit-
support uniform distributions. The estimator in (11) is 
applied to datasets of various sizes drawn from these two 
distributions using the recommended m value. The 
averages and standard deviations versus sample size of 
the estimates over 1000 Monte Carlo simulations are 
shown in Fig. 1. The true entropy of the Gaussian 

distribution is about 1.26 and that of the uniform 
distribution is 0. As expected, the systematic bias and 
variance both decrease asymptotically as the number of 
samples increases in both cases. Also note that the 
standard deviation is typically orders of magnitude larger 
than the bias, therefore, the bias does not contribute 
significantly to the overall error of the estimator. 

Minimum Error Entropy Training: To demonstrate 
the performance of the minimum error entropy criterion 
in (11), we utilize two multilayer perceptron (MLP) 
training examples.  

The first example is the short-term prediction of the 
Mackey-Glass chaotic time series [15] with parameter 

30=τ . A TDNN topology used for this purpose has a 
3-tap input, 5 neurons in the hidden layer and a single 
linear output neuron. The embedding dimension 
suggested by Taken’s Embedding Theorem is 5 for the 
Mackey-Glass series [16]. Choosing the embedding 
dimension as 3, constrains the reconstruction space to 



b
p

800 sample Mackey-Glass time series and first 200 
samples used for training and the remaining for testing. 
 Results obtained with MEE for the given short-term 
prediction is presented in Fig. 2 along with the error 
probability density function for the testing set. Similar 
results are obtained for the training set, however, the 
MSE for testing set is slightly higher than that of 
training set, which can be interpreted as an indication 
that no over-fitting occurs in the training phase. This is 
also seen by the test error distribution in Fig. 2b. 
 The second example is chosen to be a realistic 
system, namely, identification of the realistic nonlinear 
engine manifold dynamics in a car engine [17,18]. The 
engine manifold model assumes the manifold pressure 
and manifold temperature as the states, and the pressure 
as the system output. The input is the angle of the 
throttle that controls the amount of air flowing into the 
manifold. Using an ARMA model for the desired output 
here, the last two recent values of the desired response 
and the input is used for predicting the desired system 
output. 
 Results corresponding to nonlinear engine manifold 
dynamics are presented in Fig. 3, along with the 
estimation error pdf, which mostly corresponds to the 
Gaussian measurement noise in the data. A close up 
figure is also presented for this example to underline the 
accuracy of the MEE criterion, since the simulation 
results for over the whole set in Fig. 3a are not 
representative for presenting the accuracy in estimating 
high frequency characteristics of the desired output. As 
in the first data set, the MSE for the testing set is 
slightly higher than the MSE evaluated over the training 
set, hence, no over-fitting occurs in the training. 
 

V. CONCLUSIONS 
In this paper, we proposed a hybrid entropy estimator 

that exploits the variable-size kernel density estimators 
based on the plug-in estimation principle. In order to 
increase computational efficiency, inspired by the 
sample-spacing entropy estimation technique, the kernels 
are piecewise defined to be finite-support, but maintain 
various orders of continuity and differentiability. The 
latter property is required for applicability in adaptive 
system training. In this paper, the nonzero segment of the 
kernel is selected to be a fourth order polynomial, since 
this is the lowest order polynomial that satisfies 
continuity and differentiability at the boundaries while 
requiring a single analytical expression over the whole 
support. Lower order polynomials (e.g., piecewise linear 
or quadratic kernels) would require multiple segments 
over the support, while higher order polynomials would 
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Figure 3. (a) MEE results for engine manifold
dynamics for 10000 samples (b) MEE results close
up  (c) estimation error histogram for the testing
phase 
e three-dimensional and increases the difficulty of the 
rediction problem. The data set is generated to be a 

introduce more (perhaps undesirable) flexibility.  
The proposed entropy estimator is tested on uniform 

and Gaussian distributed data and is shown to be 
asymptotically unbiased and consistent. It has also been 
utilized in supervised neural network training in the 



minimum error entropy training framework in order to 
illustrate its utility. The MEE framework was proposed 
earlier and has been demonstrated to outperform standard 
squared error criteria in supervised training. Previous 
work, however, utilized fixed-size infinite-support 
kernels, which has high computational demands. The 
estimator proposed in this paper has been motivated by 
the need to reduce the computational complexity in these 
estimators while maintaining smoothness, and the need to 
have a parameter-free completely nonparametric 
estimator where the kernel size is set locally and 
automatically based on the samples. 
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