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 Abstract – Several types of entropy estimators 
exist in the information theory literature. Most of 
these estimators explicitly involve estimating the 
density of the available data samples before 
computing the entropy. However, the entropy-
estimator using sample spacing avoids this 
intermediate step and computes the entropy directly 
using the order-statistics. In this paper, we extend 
our horizon beyond Shannon’s definition of entropy 
and analyze the entropy estimation performance at 
higher orders of alpha, using Renyi’s generalized 
entropy estimator. We show that the estimators for 
higher orders of alpha better approximate the true 
entropy for an exponential family of distributions. 
Practical application of this estimator is 
demonstrated by computing mutual information 
between functionally coupled systems. During the 
estimation process, the joint distributions are 
decomposed into sum of their marginals by using 
linear ICA. 
 
Keywords – Order Statistics, Entropy, Mutual 
Information, Independent Component Analysis. 
 

I. INTRODUCTION 
 

 Entropy estimators are needed in almost every 
discipline of scientific research such as engineering, 
biomedicine, biochemistry and physics, predominantly 
due to the need to measure information from a sequence 
of available data. Even though many entropy estimation 
techniques have been developed, they suffer from either 
convergence problems or with lack of large amount of 
data, a problem common to any estimator. Estimation 
also suffers if the data has long-range dependencies or 
trends. In addition, some of the estimators need to 
estimate the data distribution before estimating the 
entropy itself. Kernel estimation techniques using 
Renyi’s entropy definitions, overcome the need to 
estimate pdf intermittently; however, they suffer from 
computational complexity. Recently, Miller et al. [1] 
proposed using a sample spacing entropy estimator 
derived by Vasicek [2] that alleviates the intermediate 
step of estimating the density of the samples and at the 
same time achieves computational simplicity. 
Specifically, this estimator uses order statistics in which 
the data sequence is sorted apriori to the entropy 
estimation. However in [1], Shannon’s definition of 

entropy (order/alpha = 1) is used. One of the main 
problems with Shannon’s entropy definition is that the 
estimate does not converge to the true entropy of the 
data sequence, even after the bias compensations [2]. 
We therefore propose the generalized Renyi’s entropy 
definition that uses higher orders of alpha (>1). The 
paper is organized as follows: In section II we use the 
generalized Renyi’s entropy definition and derive the 
entropy estimate on similar lines and assumptions as in 
[1]. Section III derives the entropy estimate for the case 
of a generalized exponential family of distributions. 
Section IV presents a simple synthetic simulation and 
also simulations with EEG data, demonstrating the 
utility of the proposed estimator. Finally, Section V. 
discusses potential avenues for further improvements. 
 

II. ENTROPY ESTIMATOR 
 

 Suppose that N iid samples {x1,x2,…,xN} of a one-
dimensional random variable X is drawn from a 
distribution p(x). The entropy of X can be defined in 
terms of the generalized definition of Renyi’s entropy 
as: 
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We know from statistics that the samples of X written in 
ascending order of their sample values represent the 
order statistics of X, i.e., x(1)≤x(2)≤…≤x(N). By defining 
m-spacing to be x(i+m)-x(i) for 1≤i<i+m≤N, the Renyi’s 
entropy estimator can now be deduced as described 
below. Although the estimator that we will present next 
is based on the universal properties of order statistics 
and does not require an explicit density assumption, we 
find it more convenient and intuitive to motivate the 
estimator through the introduction of an implicit density 
model. 
 We begin by approximating the probability density 
of X, p(x), by assigning equal weightings to each 
interval between the ordered data samples [1]. By 
assuming a uniform distribution across the intervals, we 
have 
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for . This density approximation is 
based on the fact that the expected increment in the 
value of the empirical cdf at this interval is identical to 
(2) [1]. Using (1), the 1-spacing Renyi’s entropy can 
now be written as 
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 The first approximation (a) is due to the piecewise 
uniform density assumption of the distribution of x and 
the second assumption (b) arises from the fact that we 
do not have information on the data samples, x(0) and 
x(N+1). As pointed in [1], the 1-spacing estimate suffers 
from a high variance, due to the single-interval 
dependency of the order statistics. The bias-variance 
dilemma can be asymptotically eliminated by increasing 
the sample-spacings to m. As m→∝ and (m/N)→0, the 
estimator becomes consistent. Typically, m=N1/2. The 
definition in (3) for the Renyi’s 1-spacing entropy 
estimator can now be extended to m-spacings as 
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We know that the Shannon’s m-spacing entropy 
estimator [1, 2] denotes the special case when α=1: 
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Both estimators suffer from bias that varies with m. The 
bias-compensation term in the case of Shannon’s m-
spacing entropy estimator was evaluated in [7]. While 
we leave the calculation of this bias to an extended 
journal version of this paper, in many practical 
applications, such as ICA or other entropy-based 
optimal signal processing scenarios, this bias does not 
affect the solution, since it is independent of the true 
data distribution and only depends on m and N. Without 
loss of generalization, all the results in the rest of this 
paper will be computed for the biased case in (4), and 

accordingly, comparisons will be made with the biased 
estimator of Shannon’s entropy in (5). 

 
III. RENYI’S ENTROPY FOR GENERALIZED 

EXPONENTIAL DISTRIBUTIONS 
 
 The probability density function pβ(x) for a general 
Gaussian distribution can be written as 

  
βββ
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where ∞≤≤ β1  defines the mode of the distribution. 
The Laplacian distribution ( 1=β ) and Gaussian 
distribution ( 2=β ) are members of the generalized 
Gaussian family of distributions. Using the definition of 
(1), Renyi’s entropy on can be written as, )(xpβ
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We know from (5) that C , and therefore 
incorporate it in (6) and proceed to find an analytical 
solution for Renyi’s entropy on generalized exponential 
distributions 
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Note that for Shannon’s entropy ( 1=α ), we use the 
L’Hospital’s rule as, 
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IV. SIMULATIONS AND RESULTS 

 
 In this section, we compare the accuracy of the 
generalized Renyi’s entropy estimator (for higher orders 
of α ) and the Shannon’s entropy estimator ( 1=α ), 
using a number of Monte-Carlo simulations, carried 
over a range of α  and β  values. To illustrate its 
practical utility, we present an example application in 
which we use the Renyi’s entropy estimator to estimate 
mutual information in linearly and non-linearly coupled 
systems. 
 Experiment A: In this simulation, we illustrate the 
importance of having m>1 while determining the 
Renyi’s entropy using sample spacing estimates. Fig 1. 
plots the true entropy against the estimated entropy. For 
a fixed order of 2=α , the entropy is estimated for 
some standard distributions such as Laplacian, Gaussian 
and the Uniform distributions. Fig. 1 shows that the 
estimator converges to the true entropy with increasing 
m. The variance is also seen to reduce with increasing 
m. With the sample-size set to N=104, this example 
provides enough justification for our rationale in setting 
the sample spacings to N=m . 



 Experiment B: Our second Monte-Carlo simulation 
consists of estimating the Renyi’s entropy for data 
distributions at different values of β  and at various 
orders of α (0.5, 1, 2, and 3). The sample data 
generated for each of the distributions had zero mean 
and unit-variance. For N = 104 data samples, the true 
entropy values of the generated sample data were 
determined analytically and plotted against the 
estimated entropy values, as shown in Fig. 2. One can 
observe that the entropy estimates for 2=α and 3=α  
are closer to their corresponding true values, regardless 
of the order of the distribution β . This emphasizes that 
regardless of the bias, entropy can be more accurately 
estimated at higher order values of α (>1), as opposed 
to estimating using Shannon’s entropy (α =1). 
 Experiment C: Our third simulation attempts to 
investigate the effect of sample-size (N) in entropy 
estimates. Fig 3. plots both the true entropy and the 
entropy estimates as a function of the parameter α , at 
various sample sizes (N), for a Gaussian~N(0,1) 
distributed data. It is easy to observe the higher 
accuracy achieved in estimating the entropy, with 
increasing N. The variance was also observed to 
decrease with increasing N.  Fig 3. also indicates that 
the entropy estimates closely approximate the true 
entropy for α , in the range of [1,4]. Entropy estimates 
outside this range are seen to have larger bias and 
variance and therefore not recommended. 
 Experiment D: Estimating mutual information 
using Renyi’s sample spacing entropy estimator. We 
now demonstrate a practical usage of this estimator by 
applying it in estimating the mutual information 
between two time-series. Mutual information is a widely 
used statistical measure, for detecting non-linear 
coupling/dependencies in multivariate dynamic and 
statistical structures. It is a symmetric measure and 
utilizes the complete structure of the data while 
estimating their functional relationships. Renyi’s Mutual 
Information is defined as [6] 
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An approximation to this quantity, inspired by the 
entropy expansion of Shannon’s mutual information is 
the sum of Renyi’s marginal entropies minus the joint 
entropy, which can be written as 
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 Our experiment setup consists of two uniformly 
distributed random signals ε(-1,1), x={x1(t),x2(t),t∈T} 
linearly coupled through a rotation matrix R, 
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Figure 1. Illustrating the need to have higher sample spacings
(m). Renyi’s entropy was estimated for fixed α = 2 and sample
size of N = 104 samples. 
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Figure 2. Entropy estimates on family of exponential
distributions, determined by β  (x-axis) and computed for
various orders of α . Sample-size was fixed at N = 104

samples. It is evident that higher orders of 1<α < 4 are seen
to have better accuracies in terms of bias and variance. 
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reinforces the need to have 1<α < 4. 
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The objective is to quantitatively index the amount of 
coupling between y1 and y2 by determining Renyi’s 
mutual information  as approximated by (11), 
i.e., 
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Since the components of y are formed from a linear 
combination of x, their marginal distribution involves 
convolution of two uniform pdfs that usually has the 
form of a trapezoid or a triangle. The marginal entropies 
in question are analytically determined to be 
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 The joint entropy of the components of y is the 
same as joint entropy of the components of x. This can 
be shown as follows: 
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Figure 4. Mutual information between two synthetically mixed
uniform sources, as a function of θ  (in degrees). The
estimated mutual information is in close agreement with the
theoretical value for all rotation angles. 
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Figure 5. Rat EEG signals recorded from left and right
intracranial electrodes. Left electrode signals are slightly
offset for visualization purpose. 

since log(det(R)) = 0.  Knowing that the sources x1, x2 
are independent, their joint entropy is equal to the sum 
of their marginals. Eventually, the theoretical Renyi’s 
mutual information can be written as, 
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 However, for all practical purposes, we do not have 
the source and the mixing information. While it is 
possible to compute the marginal entropies of the y 
components, the joint entropy needs some extra effort. 
The problem arises due to the fact that our definitions 
for Renyi’s entropy estimation using sample-spacings 
are only limited to estimating marginal entropies. In 
order to compute the joint entropy, we propose to treat it 
as an ICA problem where the observations can be 
construed to be formed from a linear or non-linear 
combination of independent sources. By estimating the 
demixing matrix and hence the independent sources, the 
problem reduces to finding the marginal entropy of the 
estimated sources. Mathematically, we can describe it as 
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where W-1 is the estimated demixing matrix and  are 
the estimated independent components. If we have a 
perfect estimation of the ICA solution, then 
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 We applied the GED-ICA algorithm [4] for source-
separation and then estimated the mutual-information at 
various degrees of mixing determined by R. Fig 4. 
shows the average estimated and the true mutual 
information curves, superimposed on each other, as a 
function of the rotation angle (θ ). Averaging was 
performed over 100 Monte-Carlo trials, the sample size 
was fixed at N = 106 and α  was set equal to 2. Notice 
that the estimated mutual information is consistent with 
the actual (true) mutual information. As with most other 
estimation techniques, there is a small statistical error 
associated with estimation. As noted earlier, the bias 
problem surfaced in the estimation and it was 
compensated by adding a constant term that made the 
mutual information zero for statistically independent 



case (θ  = 0). The same constant was then added to the 
mutual information estimates computed at other 
rotations as well. Overall, this experiment encourages us 
to use Renyi’s entropy estimator for estimating 
dependencies in coupled systems.  

Examples I(R;L) 
Similarity-
Index 
N(R|L)|N(L|R) 

Coherence 
(at 9 Hz) 

Set A 0.3176 0.46 0.42 0.88 
Set B 0.5021 0.63 0.69 0.86 
Set C 0.1865 0.24 0.32 0.40 

Table1. Coupling strength evaluated for the 3 sets of Male Rat 
EEG data using different measures: I(R;L) is the estimated 
mutual information using our technique, N(R|L) and N(L|R) 
are the similarity-index coefficients indicating dependencies 
between Right (R) and Left (L) channels in each direction. 
Note the discrepancy with cross-coherence where the sets A 
and B are almost equally coupled. 

 Experiment E: Application to EEG data. One 
application where mutual information is commonly used 
is in quantifying the spatio-temporal dependencies of 
multivariate EEG data. As a start, we analyze the 
dependencies between two channels in 3 sets of male rat 
EEG data [5]. The data length was 5 seconds and was 
recorded from the left and right channels on the frontal 
cortex, corresponding to different stages of epileptic 
seizure (Fig. 5). Visually, the sets B and C consist of a 
lot of spike discharges and seem to be highly 
synchronized. Set A is a normal EEG and it is not easy 
to observe how well the right and left channels are 
synchronized with each other. Mutual information 
computed on all the three sets of data revealed that the 
synchronization was more pronounced in B, compared 
to A and C (the order was B > A > C, as seen in Table 
1). In [5], it was shown that, with the exception of 
mutual information computed using box method, all the 
other measures give qualitatively equivalent results. The 
non-linear measures [5] were however, shown to be 
more sensitive and explained the possible nonlinear 
dependency between the signals. Comparisons of our 
proposed technique with few other measures, as shown 
in Table 1., indicates that our measure provides results 
that are consistent with the results obtained from other 
measures. 
 

V. DISCUSSION 
 

 In this study, we proposed a sample-spacing based 
estimator for Renyi’s entropy, as a generalization of the 
exisintg estimator for Shannon’s entropy. Based on 
order statistics, this estimator shows high estimation 
accuracy in terms of bias/variance balance and 
experimentally is observed to be most sample-efficient 
for entropy orders of 1<α <4.  In terms of sample 
spacings, we demonstrate that using more intervals in 
the order statistics ensures better approximation of the 
true entropy. Consequently, it is recommended that in 
practice m= N  or a similar monotonic function of the 
sample size is utilized. While this method is 
computationally very efficient for single-dimensional 
entropy estimation, it is not suitable for adaptation and 
its generalization to high dimensionality data is 
problematic (some approaches have been studied for the 
Sahannon case in the literature already). In this paper, 
we proposed using ICA as a tool to decompose the high 
dimensional entropy estimation problem into multiple 
single-dimensional entropy estimation problems. We 
demonstrated this principle in estimating mutual 

information, assuming linear ICA, an assumption which 
need not be generally true as most dynamical systems in 
real world have nonlinear interactions. Nonlinear ICA 
algorithms [7] might be more suitable for this purpose 
and will be studied in this context in a future 
publication. 
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