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Abstract. Clustering is a fundamental problem in 
machine learning with numerous important applications 
in statistical signal processing, pattern recognition, and 
computer vision, where unsupervised analysis of data 
classification structures are required. The current state-
of-the-art in clustering is widely accepted to be the so-
called spectral clustering. Spectral clustering, based on 
pairwise affinities of samples imposes very large 
computational requirements. In this paper, we propose a 
vector quantization preprocessing stage for spectral 
clustering similar to the classical mean-shift principle 
for clustering. This preprocessing reduces the 
dimensionality of the matrix on which spectral 
techniques will be applied, resulting in significant 
computational savings. 
 
1. INTRODUCTION 

Data clustering is an important fundamental problem 
having a wide range of applications on different aspects 
of unsupervised learning; image segmentation, data 
mining, speech recognition, and data compression to 
name just a few.  In recent years there has been a growing 
interest on spectral clustering and it is recognized as an 
important tool for clustering problems. In spectral 
clustering, data segmentation is obtained using the 
eigendecomposition of an affinity matrix that defines the 
similarities in the data. In the definition of the affinity 
matrix, different similarity measures can be utilized to 
characterize the affinities. The affinities do not even have 
to obey the metric axioms except the symmetry property.  

 Spectral clustering dates back to the discovery of the 
utilization of the second eigenvector of the Laplacian 
matrix to bi-partition the data, by Fiedler [1]. Recently, a 
number of related clustering methods are suggested that 
utilize the eigenvectors or generalized eigenvectors of the 
affinity matrix [2-14]. Such methods are known as 
spectral clustering and considered to be the state-of-the 
art clustering methods in the literature. 

 The majority of the spectral clustering algorithms 
are different variants of graph cut and multiway cut 
methods, each using different affinity matrices and 
utilizing the resulting eigendecomposition in different 
manners. Obtaining the eigendecomposition, the 
clustering is obtained by thresholding the values of a 
suitably selected eigenvector. One should also notice that 
these methods are sensitive to the definition of affinity 
between the data pairs, and since no theoretical criterion 
for choosing the functions to assign the affinities are 
known, these algorithms require the assumption of the 
existence of a suitable affinity definition. 

 A different track in spectral clustering was 
designated by Scott and Longuet-Higgins [12], in which 
they propose a mapping using the eigenvectors of the 
affinity matrix to transform the data from the original data 
space to the kernel induced feature space, and do the 
actual clustering on the image of the data in that space. 
Normalization of the transformed data is an important 
step in this approach, and provided that, clustering of the 
image of the data in the kernel induced feature space is 
shown to be generating very successful results for a 
variety of different data sets. Spectral clustering can be 
understood as measuring sample similarities by an inner 
product in the kernel-induced feature space. Using 
Mercer kernels, the kernel trick defines a technique to 
compute the inner products in the potentially infinite 
dimensional kernel induced feature space. Kernel-based 
methods rely on the assumption that the clustering in the 
kernel induced feature space is easier compared to the 
original clustering problem. In practice, one cannot prove 
that this assumption holds for all Mercer kernels, on the 
other hand, one could search for a kernel that makes this 
desired property true. Kernel optimization, in general, is a 
daunting task and there are no practical solutions yet. We 
will exploit the connection of kernel methods with kernel 
density estimation to be able to utilize well-known results 
from this literature to select an appropriate kernel [15]. 
  The main shortcoming of the spectral clustering 
algorithms is the computational complexity, since these 
algorithms require the computation of the eigenvectors of 
the NN × affinity matrix, where N is the sample size. 
The computational complexity of all the eigenvector 
calculations is O(N3), which makes the spectral clustering 
methods impractical to use for large data sets.  
 In this paper, we propose a spectral clustering 
algorithm using fixed-size kernel density estimation with 
a mean shift algorithm to represent the data in a much 
smaller and quantized affinity matrix. This leads to a 
reduced computational complexity, which is defined in 
the order of modes present in the data probability density 
function.  
 
2. THE PROPOSED METHOD 
 We discuss the details of the proposed method in this 
section after a brief overview of spectral clustering. 
Given a set of vectors {x1,…,xN} and a suitable kernel 
function  Kσ(xi,xj)  the measure of pairwise affinity or 
closeness  where σ denotes the kernel size (e.g., the 
standard deviation in the case of a Gaussian kernel), the 
affinity matrix K or the normalized graph Laplacian 
matrix L are constructed as shown in (1) [5,7,8]. 
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Figure 1. Two Gaussian clusters with (a) balanced and (b)
unbalanced a priori probabilities. The boundary based on the
overall data distribution (solid) determined by solving the zero-
gradient equation to find the local minimum density point
between the clusters is a good approximation of the optimal
Bayes boundary based on the individual weighted cluster
distributions (dotted) determined by the intersection point. 

where the normalization terms are given by 
. ∑= j ijiD K

 The clustering solution is achieved using one of the 
following three approaches on these matrices (the 
normalized Laplacian is usually the matrix of choice due 
to its improved eigenspread [8] and relationship with 
normalized graph cuts [5,6,11]): 
 1. Threshold the largest eigenvector of K [7]. 
 2. Threshold the second largest eigenvector of L [5]. 
 3. Transform the data to the kernel-induced feature 

space using the eigenvectors of K or L and use a 
simple clustering algorithm in that domain [12]. 

The size of both K and L is N×N; therefore, the 
calculation of necessary eigenvectors becomes 
cumbersome for very large N. 
 Recently, it has been shown that spectral clustering 
approaches based on the affinity and Laplacian matrices 
are intrinsically related to kernel density estimation and 
assignment of cluster labels to minimize between-cluster 
overlap and within cluster entropy [16]. Specifically, 
using a fixed-size kernel density estimate, spectral 
clustering is cast as an optimisation problem where the 
angle between the cluster distributions is to be 
maximized as measured by the inner product between the 
tentative cluster distributions at any step of label 
assignment iterations. 
 Motivated by this relationship between spectral 
clustering and fixed-size kernel density estimation, we 
propose a two-stage nonparametric clustering algorithm 
that combines the mean-shift principle [17,18] and 
spectral clustering technique. The first stage of this 
approach aims to determine the modes of the 
nonparametric kernel density estimate of the data, which 
acts as a vector quantization preprocessing stage for the 
following spectral clustering stage. This procedure 
reduces the dimensionality of the affinity/Laplacian 
matrix from N to M, where M is the number of modes of 
the estimated data distribution as determined by the 
mean-shift procedure. Typically, M<<N, resulting in 
significant savings in spectral computations. In the 
following, we focus on the 2-cluster case for simplicity. 
The technique, however, generalizes to arbitrary number 
of clusters easily, assuming that the number of clusters 
can be either estimated correctly or input to the system 
and leaving the estimation of number of clusters as a 
future work. 
 
2.1. Decision Boundary for Clustering 
 In classification, given the knowledge of the true 
underlying class distributions q1(x) and q2(x) and their 
corresponding a priori probabilities p1 and p2, the optimal 
Bayes classifier that minimizes the average probability of 

error can be easily determined and the corresponding 
separation boundary is given by the solution to the 
equation p1q1(x)=p2q2(x). In clustering, we do not have 
access to the individual cluster distributions; however, 
assume that the overall data distribution is known to be 
q(x)=p1q1(x)+p2q2(x), where qi(x) are unimodal 
distributions for the sake of discussion simplicity. Given 
q(x), a reasonable clustering boundary is the local minima 
between the modes corresponding to different clusters, on 
which the gradient is zero, i.e., ∇q(x)=0. To illustrate this, 
we present in Fig. 1 two cases involving two Gaussian 
classes with balanced and unbalanced a priori 
probabilities. The minimum of the overall distribution 
between the clusters is a reasonable approximation to the 
optimal Bayes boundary in both cases (due to the 
symmetry of the density values and their gradients around 
the boundary). 
 
2.2. Nonparametric Density Estimation 
 In practice, the analytical expression for the data 
distribution is generally unknown. Furthermore, in many 
applications these distributions take complex forms and 
determining suitable parametric families without 
compromising model accuracy may not be trivial. 
Nonparametric density estimation techniques alleviate 
this difficulty by offering versatile alternatives. In this 
paper, we specifically employ the kernel density 
estimation technique [19,20] for mainly two reasons: (i) it 
is a flexible and established nonparametric density 
estimation that leads to continuous and smooth density 
estimates, which makes local update based search 
algorithms feasible, (ii) it allows a natural connection 
with state-of-the-art spectral clustering approaches, thus 
naturally allows the construction of a pairwise affinity 
matrix between the determined modes for spectral 
analysis in the second stage. 
 Given a set of samples {x1,…,xN} and a kernel 
function Kσ(.), where σ denotes the kernel size (we 
assume spherical symmetry for simplicity, but this 
assumption can be easily relaxed), the kernel estimate of 



the underlying probability density function is given by 
[19] 
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An important consideration in kernel density estimation 
is the selection of the kernel size parameter. While there 
are many techniques for optimizing this parameter such 
as those based on the maximum likelihood principle 
[20], a convenient choice is Silverman’s rule-of-thumb, 
which is optimal if the true underlying data distribution 
is Gaussian. For n-dimensional N-sample dataset, 
denoting the sample covariance estimate by Σx, this 
gives [15] 
  (3) ( )( ) )4/(22 )12(/4)()/1( ++= nNntrn xΣσ
Alternative kernel size selections can be utilized, as well 
as variable size kernel density estimates. We leave the 
latter to a future study, as introducing individual kernel 
sizes for each sample will increase the overall 
computational complexity of the algorithm. 
 
2.3. Fixed-Point Iterations for Vector Quantization 
 The modes of the data distribution provide a natural 
clustering solution, where the attraction basin of each 
mode is a cluster associated with the corresponding 
mode.1 Some versions of the mean-shift clustering 
algorithm rely on this natural clustering definition to 
determine the clustering solution [17,18]. Given the 
kernel density estimate of (2), it is easy to determine a 
fast fixed-point algorithm that determines to which 
mode each sample belongs. At the peak of each mode, 
the gradient becomes zero: 

 0
x

xx
x
x

=
∂
−∂

=
∂

∂ ∑
=

N

i

i
T K

N
q

1

)(1)( σ  (4) 

Specifically for a circular Gaussian kernel this becomes 
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Isolating x on one side and reorganizing the terms in 
(5), we obtain the following fixed-point recursive 
update for finding the mode corresponding to an 
arbitrary initial point. 
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 In general, however, one cannot expect each mode 
to be a meaningful cluster due to the existence of 
statistical variations in nonparametric density estimation 
in the finite sample case. Each mode at best represents a 
vector quantization solution that must be evaluated for 
the final clustering label assignments appropriately to 
                                                           
1 The attraction basin of a mode is the volume in the data space 
from which gradient ascent on the data probability density 
function leads to the peak of that mode. 
Outline of the overall algorithm 
1. Get the data x and employ the fixed-point
algorithm in (6) to find the modes of the probability
density function. 
2. Construct K, using (9) calculate Dij for all i,j and
using (8) construct K~ . 
3.  Sort all pairwise affinities defined in non-diagonal
entries of K~ in an ascending order. The diagonal
entries can be ignored, since they all are equal to
unity. Representing the affinities of modes with
themselves, these entries don’t carry out information.
4. Remove the weakest connection, defined by the
smallest affinity. 
5. Check graph connectivity, and determine the
number of separate trees. If the number of separated
trees in the graph is equal to the required number of
clusters, assign the connected modes into the same
cluster and stop. Otherwise go to step 4. 
take into account such effects. The method to resolve 
this issue will be detailed in the next section.  
 
2.4. Quantization of the Affinity Matrix 
 In spectral clustering, the data affinity matrix is 
constructed by evaluating all pairwise 

)( ijK xx −σ similarity measures between samples 
leading into 
 )( ijij K xxK −= σ  (7) 
Since reducing the size of the affinity matrix is central to 
the proposed approach, choosing how to quantize the 
affinity matrix is the most important step in the algorithm. 
Considering the modes determined by the fixed-point 
algorithm as an intermediate clustering step, representing 
each mode with a single entry is a suitable way of 
quantizing the affinity matrix. Several methods can be 
applied to define this entry that will represent the whole 
set of data points that are assigned to it; since it is known 
to be a reliable divergence measure, the normalized graph 
cut merits special attention at this point. Defining a 
symmetric affinity metric between clusters of points, the 
normalized graph cut leads to a positive semi definite 
quantized affinity matrix K~  defined as  
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where Dij is the normalized graph cut between 
intermediate clusters, namely modes, i and j is defined as, 
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Investigating (8) and (9), one can also interpret ijK~  as a 
probability density estimate distance between modes i 
and j, since normalized graph cut is an inner product 
between the probability density functions of individual 



modes, whose result is equal to the cosine of the angle 
between the means of individual modes in the kernel 
induced feature space. Specifically, one can easily see 
that if  
  (10) jidppD jiij ,)()( ∀= ∫ xxx 0.

where pi(x) and pj(x) are the probability density functions 
of the individual clusters. Then (9) is a Parzen window 
based estimate for this inner product. Furthermore, ijK~  
in (8) is the CS-distance between pi(x) and pj(x) [20]. 
 
2.5. Spectral Clustering of Quantized Affinity Matrix  
 Spectral clustering methods employ the 
eigendecomposition of the affinity matrix to to obtain a 
clustering statistic. The difficulty, however, is that the 
data affinity matrix is , for an N-sample dataset, 
and eigenvector calculations in high dimensionality are 
computationally very expensive – O(N

NN ×

3). 
 After evaluating the quantized affinity matrix K~ , 
one can also use any well-known spectral clustering 
method in the literature. However, we propose another 
simple but robust algorithm here, which would become 
impractical for large affinity matrices on the orders of 
data sizes due to its O(N4) complexity. On the other hand, 
this method produced good results for small sized 
quantized affinity matrices and preferred here to be able 
to indicate that quantizating the affinity matrix in a 
suitable way, one can use a variety of different spectral 
clustering algorithms using the resulting quantized 
matrix, which were originally impractical to use for huge 
data affinity matrices. Once the clustering results for the 
modes are obtained, the actual clustering can be achieved 
by assigning a common label to all the data points in the 
same cluster of modes. 
 The spectral clustering algorithm used here is as 
simple as sorting all affinities in K~ with an ascending 
order and removing the weakest connection defined by 
the smallest affinity one by one until the required number 
of clusters is reached. In each step, the graph connectivity 
is being checked and the algorithm decides on either 
continuing to remove connections or stopping and 
assigning the connected modes into the same cluster. 
Performed in each iteration with O(N2) complexity, 
checking the graph connectivity is the dominant 
computational load, resulting in a O(N4) complexity for 
the overall algorithm. To check the graph connectivity, a 
well-known connected components algorithm is used 
[21]. The outline of the resulting spectral clustering 
algorithm is given in Table 1. 
 
3. EXPERIMENTAL RESULTS 

Crescent Dataset: This dataset consists of two 
crescent-shaped clusters with a nonlinear separation 
boundary in between. For each cluster, 200 two-
dimensional samples are generated by uniformly 

selecting the angle in a π-radian arc and perturbing the 
radius with Gaussian distributed random values. The 
class centers are selected such that the possibility of 
having a linear boundary on which the classes become 
easily separable is eliminated. 
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Figure 2. The original crescent dataset, where the points
represent the data points and the lines connect the modes that
are clustered into the same cluster. 

 The original dataset and a sample simulation result 
are presented in figure 2, where the points represent data 
and the connected intermediate clusters represent the 
clustering result. Original affinity matrix K and 
quantized affinity matrix K~  are shown figure 3a and 
figure 3b. 
 The results in figure 2 demonstrate a perfect 
clustering performance for this dataset (since clusters 
are reasonably separated). Additionally, for this 
example one can also notice the similarities between K 
and K~ , which is not the case in general. Our 
experiments with various degrees of cluster overlap 
yielded consistent and reasonable clustering solutions.  
 Since this dataset is synthetically generated and the 
clusters are designed such that their distributions show 
similarities rather than a translation and rotation in the 
original space, not surprisingly, the number of modes in 
two clusters turned out to be almost equal. Generally, 
since the convergence rate in the fixed-point iterations is 
constant throughout the data feature space, clusters with 
different in-cluster-variances in the same dataset may 
result in different numbers of modes, hence different 
number of intermediate clusters, for each individual 
cluster. Although synthetically generated, this dataset is 
quite successful in showing the basic concepts applied, 
and result obtained with a real dataset will be presented 
in the next subsection. 
 Handwritten Digit Recognition: Originally being 
generated for a classification problem, clustering 
handwritten digit data is a suitable real-data application 
for demonstrating the proposed clustering algorithm. 
This digit database contains 250 samples from 44 
subjects and can be found in UCI database [22]. 
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Figure 3. Quantized (top) and original (bottom) affinity
matrices for the crescent dataset (diagonals nulled). 
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Figure 4. Quantized (top) and original (bottom) affinity
matrices for handwritten digits (diagonals nulled). 

Although the original database contains ten digits, for 
ease of illustration and discussion, we utilize only the 
digits 1 and 2. 
 Being sixteen-dimensional, the original data is 
impossible to present in a figure even with a suitable 
two-dimensional subspace projection. For this dataset, 
the quantized affinity matrix K~  is presented along with 
the original affinity matrix K in Figure 3a and Figure 
3b, respectively. Comparing K and K~  one can easily 
observe the effect of different in-cluster-variances in the 
results of this dataset; namely, the number of 
intermediate clusters in cluster representing one is less 
than those in cluster representing two. 
 Although presented here for only two class 
problems, the method can be easily extended into multi-
cluster problems by adjusting the required number of 
clusters at output to the desired. Automatic selection of 
the number of clusters based on the affinity matrices is 
also possible and will be the subject of future work. 
 
4. CONCLUSIONS 
 Although proven to be effective and considered to be 
the state-of-the-art methods for clustering, the main 
drawback of spectral clustering methods is the 
computational burden. This is mainly caused by the 

calculation of the eigenvalues of the affinity matrix, 
having a O(N3) complexity. In this paper, a mean shift 
preprocessing stage is proposed along with a spectral 
clustering algorithm that simply uses pairwise 
similarities. 
 This technique may lead to a sub-optimal solution 
for an unsuitably selected kernel function, due to a poor 
estimate of data probability density. On the other hand, 
the absence of theory for a suitable selection for the 
kernel is a common drawback of all spectral clustering 
algorithm. The mean shift preprocessing stage proved to 
be practical, providing useful results with a significant 
decrease in overall computational complexity.  
 Future work will focus on the selection of optimal 
kernels, variable-size kernel density estimation for better 
results in the mean-shift stage, and automatic detection of 
the number of statistically significant clusters. 
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