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Abstract

A new distance measure between probability density functions
(pdfs) is introduced, which we refer to as the Laplacian pdf dis-
tance. The Laplacian pdf distance exhibits a remarkable connec-
tion to Mercer kernel based learning theory via the Parzen window
technique for density estimation. In a kernel feature space defined
by the eigenspectrum of the Laplacian data matrix, this pdf dis-
tance is shown to measure the cosine of the angle between cluster
mean vectors. The Laplacian data matrix, and hence its eigenspec-
trum, can be obtained automatically based on the data at hand,
by optimal Parzen window selection. We show that the Laplacian
pdf distance has an interesting interpretation as a risk function
connected to the probability of error.

1 Introduction

In recent years, spectral clustering methods, i.e. data partitioning based on the
eigenspectrum of kernel matrices, have received a lot of attention [1, 2]. Some
unresolved questions associated with these methods are for example that it is not
always clear which cost function that is being optimized and that is not clear how
to construct a proper kernel matrix.

In this paper, we introduce a well-defined cost function for spectral clustering. This
cost function is derived from a new information theoretic distance measure between
cluster pdfs, named the Laplacian pdf distance. The information theoretic/spectral
duality is established via the Parzen window methodology for density estimation.
The resulting spectral clustering cost function measures the cosine of the angle
between cluster mean vectors in a Mercer kernel feature space, where the feature
space is determined by the eigenspectrum of the Laplacian matrix. A principled
approach to spectral clustering would be to optimize this cost function in the feature
space by assigning cluster memberships. Because of space limitations, we leave it
to a future paper to present an actual clustering algorithm optimizing this cost
function, and focus in this paper on the theoretical properties of the new measure.

∗Corresponding author. Phone: (+47) 776 46493. Email: robertj@phys.uit.no



An important by-product of the theory presented is that a method for learning the
Mercer kernel matrix via optimal Parzen windowing is provided. This means that
the Laplacian matrix, its eigenspectrum and hence the feature space mapping can
be determined automatically. We illustrate this property by an example.

We also show that the Laplacian pdf distance has an interesting relationship to the
probability of error.

In section 2, we briefly review kernel feature space theory. In section 3, we utilize
the Parzen window technique for function approximation, in order to introduce the
new Laplacian pdf distance and discuss some properties in sections 4 and 5. Section
6 concludes the paper.

2 Kernel Feature Spaces

Mercer kernel-based learning algorithms [3] make use of the following idea: via a
nonlinear mapping

Φ : Rd → F , x → Φ(x) (1)

the data x1, . . . ,xN ∈ Rd is mapped into a potentially much higher dimensional
feature space F . For a given learning problem one now considers the same algorithm
in F instead of in Rd, that is, one works with Φ(x1), . . . ,Φ(xN ) ∈ F .

Consider a symmetric kernel function k(x,y). If k : C × C → R is a continuous
kernel of a positive integral operator in a Hilbert space L2(C) on a compact set
C ∈ Rd, i.e.

∀ψ ∈ L2(C) :

∫

C
k(x,y)ψ(x)ψ(y)dxdy ≥ 0, (2)

then there exists a space F and a mapping Φ : Rd → F , such that by Mercer’s
theorem [4]

k(x,y) = 〈Φ(x),Φ(y)〉 =

NF
∑

i=1

λiφi(x)φi(y), (3)

where 〈·, ·〉 denotes an inner product, the φi’s are the orthonormal eigenfunctions
of the kernel and NF ≤ ∞ [3]. In this case

Φ(x) = [
√

λ1φ1(x),
√

λ2φ2(x), . . . ]T , (4)

can potentially be realized.

In some cases, it may be desirable to realize this mapping. This issue has been
addressed in [5]. Define the (N × N) Gram matrix, K, also called the affinity, or
kernel matrix, with elements Kij = k(xi,xj), i, j = 1, . . . , N . This matrix can be
diagonalized as ET KE = Λ, where the columns of E contains the eigenvectors of K
and Λ is a diagonal matrix containing the non-negative eigenvalues λ̃1, . . . , λ̃N , λ̃1 ≥
· · · ≥ λ̃N . In [5], it was shown that the eigenfunctions and eigenvalues of (4) can

be approximated as φj(xi) ≈
√
Neji, λj ≈ λ̃j

N , where eji denotes the ith element
of the jth eigenvector. Hence, the mapping (4), can be approximated as

Φ(xi) ≈ [

√

λ̃1e1i, . . . ,

√

λ̃NeNi]
T . (5)

Thus, the mapping is based on the eigenspectrum of K. The feature space data set
may be represented in matrix form as ΦN×N = [Φ(x1), . . . ,Φ(xN )]. Hence, Φ =

Λ
1
2 ET . It may be desirable to truncate the mapping (5) to C-dimensions. Thus,



only the C first rows of Φ are kept, yielding Φ̂. It is well-known that K̂ = Φ̂
T
Φ̂ is

the best rank-C approximation to K wrt. the Frobenius norm [6].

The most widely used Mercer kernel is the radial-basis-function (RBF)

k(x,y) = exp

{

−||x − y||2
2σ2

}

. (6)

3 Function Approximation using Parzen Windowing

Parzen windowing is a kernel-based density estimation method, where the resulting
density estimate is continuous and differentiable provided that the selected kernel
is continuous and differentiable [7]. Given a set of iid samples {x1, . . . ,xN} drawn
from the true density f(x), the Parzen window estimate for this distribution is [7]

f̂(x) =
1

N

N
∑

i=1

Wσ2 (x,xi), (7)

where Wσ2 is the Parzen window, or kernel, and σ2 controls the width of the kernel.
The Parzen window must integrate to one, and is typically chosen to be a pdf itself
with mean xi, such as the Gaussian kernel

Wσ2(x,xi) =
1

(2πσ2)
d
2

exp

{

−||x − xi||2
2σ2

}

, (8)

which we will assume in the rest of this paper. In the conclusion, we briefly discuss
the use of other kernels.

Consider a function h(x) = v(x)f(x), for some function v(x). We propose to
estimate h(x) by the following generalized Parzen estimator

ĥ(x) =
1

N

N
∑

i=1

v(xi)Wσ2 (x,xi). (9)

This estimator is asymptotically unbiased, which can be shown as follows

Ef

{

1

N

N
∑

i=1

v(xi)Wσ2 (x,xi)

}

=

∫

v(z)f(z)Wσ2 (x, z)dz = [v(x)f(x)] ∗Wσ2 (x),

(10)
where Ef (·) denotes expectation with respect to the density f(x). In the limit as
N → ∞ and σ(N) → 0, we have

lim
N→∞

σ(N)→0

[v(x)f(x)] ∗Wσ2 (x) = v(x)f(x). (11)

Of course, if v(x) = 1 ∀x, then (9) is nothing but the traditional Parzen estimator
of h(x) = f(x). The estimator (9) is also asymptotically consistent provided that
the kernel width σ(N) is annealed at a sufficiently slow rate. The proof will be
presented in another paper.

Many approaches have been proposed in order to optimally determine the size of
the Parzen window, given a finite sample data set. A simple selection rule was
proposed by Silverman [8], using the mean integrated square error (MISE) between
the estimated an the actual pdf as the optimality metric:

σopt = σX

{

4N−1(2d+ 1)−1
}

1
d+4 , (12)

where d is the dimensionality of the data and σ2
X = d−1

∑

i ΣXii , where ΣXii are the
diagonal elements of the sample covariance matrix. More advanced approximations
to the MISE solution also exist.



4 The Laplacian PDF Distance

Cost functions for clustering are often based on distance measures between pdfs.
The goal is to assign memberships to the data patterns with respect to a set of
clusters, such that the cost function is optimized.

Assume that a data set consists of two clusters. Associate the probability den-
sity function p(x) with one of the clusters, and the density q(x) with the other
cluster. Let f(x) be the overall probability density function of the data set.
Now define the f−1 weighted inner product between p(x) and q(x) as 〈p, q〉1/f ≡
∫

p(x)q(x)f−1(x)dx. In such an inner product space, the Cauchy-Schwarz inequality

holds, that is, 〈p, q〉21/f ≤ 〈p, p〉1/f 〈q, q〉1/f . Based on this discussion, an information

theoretic distance measure between the two pdfs can be expressed as

DL = − log
〈p, q〉1/f

√

〈p, p〉1/f 〈q, q〉1/f

≥ 0. (13)

We refer to this measure as the Laplacian pdf distance, for reasons that we discuss
next. It can be seen that the distance DL is zero if and only if the two densities
are equal. It is non-negative, and increases as the overlap between the two pdfs
decreases. However, it does not obey the triangle inequality, and is thus not a
distance measure in the strict mathematical sense.

We will now show that the Laplacian pdf distance is also a cost function for clus-
tering in a kernel feature space, using the generalized Parzen estimators discussed
in the previous section. Since the logarithm is a monotonic function, we will derive
the expression for the argument of the log in (13). This quantity will for simplicity
be denoted by the letter “L” in equations.

Assume that we have available the iid data points {xi}, i = 1, . . . , N1, drawn from
p(x), which is the density of cluster C1, and the iid {xj}, j = 1, . . . , N2, drawn from

q(x), the density of C2. Let h(x) = f− 1
2 (x)p(x) and g(x) = f− 1

2 (x)q(x). Hence, we
may write

L =

∫

h(x)g(x)dx
√

∫

h2(x)dx
∫

g2(x)dx
. (14)

We estimate h(x) and g(x) by the generalized Parzen kernel estimators, as follows

ĥ(x) =
1

N1

N1
∑

i=1

f− 1
2 (xi)Wσ2 (x,xi), ĝ(x) =

1

N2

N2
∑

j=1

f− 1
2 (xj)Wσ2 (x,xj). (15)

The approach taken, is to substitute these estimators into (14), to obtain

∫

h(x)g(x)dx ≈
∫

1

N1

N1
∑

i=1

f− 1
2 (xi)Wσ2 (x,xi)

1

N2

N2
∑

j=1

f− 1
2 (xj)Wσ2 (x,xj)

=
1

N1N2

N1,N2
∑

i,j=1

f− 1
2 (xi)f

− 1
2 (xj)

∫

Wσ2(x,xi)Wσ2 (x,xj)dx

=
1

N1N2

N1,N2
∑

i,j=1

f− 1
2 (xi)f

− 1
2 (xj)W2σ2 (xi,xj), (16)



where in the last step, the convolution theorem for Gaussians has been employed.
Similarly, we have

∫

h2(x)dx ≈ 1

N2
1

N1,N1
∑

i,i′=1

f− 1
2 (xi)f

− 1
2 (xi′ )W2σ2 (xi,xi′ ), (17)

∫

g2(x)dx ≈ 1

N2
2

N2,N2
∑

j,j′=1

f− 1
2 (xj)f

− 1
2 (xj′ )W2σ2 (xj ,xj′ ). (18)

Now we define the matrix K1/f , such that

K1/fij
= K1/f (xi,xj) = f− 1

2 (xi)f
− 1

2 (xj)K(xi,xj), (19)

where K(xi,xj) = W2σ2 (xi,xj) for i, j = 1, . . . , N and N = N1 + N2. As a
consequence, (14) can be re-written as follows

L =

∑N1,N2

i,j=1 K1/f (xi,xj)
√

∑N1,N1

i,i′=1 K1/f (xi,xi′ )
∑N2,N2

j,j′=1 K1/f (xj ,xj′ )
(20)

The key point of this paper, is to note that the matrix K = Kij = K(xi,xj), i, j =
1, . . . , N , is the data affinity matrix, and that K(xi,xj) is a Gaussian RBF kernel
function. Hence, it is also a kernel function that satisfies Mercer’s theorem. Since
K(xi,xj) satisfies Mercer’s theorem, the following by definition holds [4]. For any
set of examples {x1, . . . ,xN} and any set of real numbers ψ1, . . . , ψN

N
∑

i=1

N
∑

j=1

ψiψjK(xi,xj) ≥ 0, (21)

in analogy to (3). Moreover, this means that

N
∑

i=1

N
∑

j=1

ψiψjf
− 1

2 (xi)f
− 1

2 (xj)K(xi,xj) =
N

∑

i=1

N
∑

j=1

ψiψjK1/f (xi,xj) ≥ 0, (22)

hence K1/f (xi,xj) is also a Mercer kernel.

Now, it is readily observed that the Laplacian pdf distance can be analyzed in
terms of inner products in a Mercer kernel-based Hilbert feature space, since
K1/f (xi,xj) =

〈

Φ1/f (xi),Φ1/f (xj)
〉

. Consequently, (20) can be written as follows

L =

∑N1,N2

i,j=1

〈

Φ1/f (xi),Φ1/f (xj)
〉

√

∑N1,N1

i,i′=1

〈

Φ1/f (xi),Φ1/f (xi′)
〉
∑N2,N2

j,j′=1

〈

Φ1/f (xj),Φ1/f (xj′ )
〉

=

〈

1
N1

∑N1

i=1 Φ1/f (xi),
1

N2

∑N2

j=1 Φ1/f (xj)
〉

√

〈

1
N1

∑N1

i=1 Φ1/f (xi),
1

N1

∑N1

i′=1 Φ1/f (xi′ )
〉 〈

1
N2

∑N2

j=1 Φ1/f (xj),
1

N2

∑N2

j′=1 Φ1/f (xj′ )
〉

=

〈

m11/f
,m21/f

〉

||m11/f
||||m21/f

|| = cos 6 (m11/f
,m21/f

), (23)

where mi1/f
= 1

Ni

∑Ni

l=1 Φ1/f (xl), i = 1, 2, that is, the sample mean of the ith
cluster in feature space.



This is a very interesting result. We started out with a distance measure between
densities in the input space. By utilizing the Parzen window method, this distance
measure turned out to have an equivalent expression as a measure of the distance
between two clusters of data points in a Mercer kernel feature space. In the feature
space, the distance that is measured is the cosine of the angle between the cluster
mean vectors.

The actual mapping of a data point to the kernel feature space is given by the
eigendecomposition of K1/f , via (5). Let us examine this mapping in more detail.

Note that f
1
2 (xi) can be estimated from the data by the traditional Parzen pdf

estimator as follows

f
1
2 (xi) =

√

√

√

√

1

N

N
∑

l=1

Wσ2
f
(xi,xl) =

√

di. (24)

Define the matrix D = diag(d1, . . . , dN ). Then K1/f can be expressed as

K1/f = D− 1
2 KD− 1

2 . (25)

Quite interestingly, for σ2
f = 2σ2, this is in fact the Laplacian data matrix. 1

The above discussion explicitly connects the Parzen kernel and the Mercer kernel.
Moreover, automatic procedures exist in the density estimation literature to opti-
mally determine the Parzen kernel given a data set. Thus, the Mercer kernel is
also determined by the same procedure. Therefore, the mapping by the Laplacian
matrix to the kernel feature space can also be determined automatically. We regard
this as a significant result in the kernel based learning theory.

As an example, consider Fig. 1 (a) which shows a data set consisting of a ring
with a dense cluster in the middle. The MISE kernel size is σopt = 0.16, and
the Parzen pdf estimate is shown in Fig. 1 (b). The data mapping given by the
corresponding Laplacian matrix is shown in Fig. 1 (c) (truncated to two dimensions
for visualization purposes). It can be seen that the data is distributed along two lines
radially from the origin, indicating that clustering based on the angular measure
we have derived makes sense.

The above analysis can easily be extended to any number of pdfs/clusters. In the
C-cluster case, we define the Laplacian pdf distance as

L =
C−1
∑

i=1

∑

j 6=i

〈pi, pj〉1/f

C
√

〈pi, pi〉1/f 〈pj , pj〉1/f

. (26)

In the kernel feature space, (26), corresponds to all unit-norm cluster mean vectors
being pairwise as orthogonal to each other as possible, for all possible unique pairs.

4.1 Connection to the Ng et al. [2] algorithm

Recently, Ng et al. [2] proposed to map the input data to a feature space determined
by the eigenvectors corresponding to the C largest eigenvalues of the Laplacian ma-
trix. In that space, the data was normalized to unit norm and clustered by the
C-means algorithm. We have shown that the Laplacian pdf distance provides a

1It is a bit imprecise to refer to K1/f as the Laplacian matrix, as readers familiar
with spectral graph theory may recognize, since the definition of the Laplacian matrix is
L = I − K1/f . However, replacing K1/f by L does not change the eigenvectors, it only
changes the eigenvalues from λi to 1 − λi.



(a) Data set (b) Parzen pdf estimate

0

0

(c) Feature space data

Figure 1: The kernel size is automatically determined (MISE), yielding the Parzen
estimate (b) with the corresponding feature space mapping (c).

clustering cost function, measuring the cosine of the angle between cluster means,
in a related kernel feature space, which in our case can be determined automati-
cally. A more principled approach to clustering than that taken by Ng et al. is to
optimize (23) in the feature space, instead of using C-means. However, because of
the normalization of the data in the feature space, C-means can be interpreted as
clustering the data based on an angular measure. This may explain some of the
success of the Ng et al. algorithm; it achieves more or less the same goal as cluster-
ing based on the Laplacian distance would be expected to do. We will investigate
this claim in our future work. Note that we in our framework may choose to use
only the C largest eigenvalues/eigenvectors in the mapping, as discussed in section
2. Since we incorporate the eigenvalues in the mapping, in contrast to Ng et al.
the actual mapping will in general be different in the two cases.

5 The Laplacian PDF distance as a risk function

We now give an analysis the Laplacian pdf distance that may further motivate its
use as a clustering cost function. Consider again the two cluster case. The overall
data distribution can be expressed as f(x) = P1p(x)+P2q(x), were Pi, i = 1, 2, are
the priors. Assume that the two clusters are well separated, such that for xi ∈ C1,
f(xi) ≈ P1p(xi), while for xi ∈ C2, f(xi) ≈ P2q(xi). Let us examine the numerator
of (14) in this case. It can be approximated as
∫

p(x)q(x)

f(x)
dx ≈

∫

C1

p(x)q(x)

f(x)
dx+

∫

C2

p(x)q(x)

f(x)
dx ≈ 1

P1

∫

C1

q(x)dx+
1

P2

∫

C2

p(x)dx.

(27)
By performing a similar calculation for the denominator of (14), it can be shown to
be approximately equal to 1√

P1P1
. Hence, the Laplacian pdf distance can be written

as a risk function, given by

L ≈
√

P1P2

(

1

P1

∫

C1

q(x)dx +
1

P2

∫

C2

p(x)dx

)

. (28)

Note that if P1 = P2 = 1
2 , then L = 2Pe, where Pe is the probability of error when

assigning data points to the two clusters, that is

Pe = P1

∫

C1

q(x)dx + P2

∫

C2

p(x)dx. (29)



Thus, in this case, minimizing L is equivalent to minimizing Pe. However, in the case
that P1 6= P2, (28) has an even more interesting interpretation. In that situation,
it can be seen that the two integrals in the expressions (28) and (29) are weighted
exactly oppositely. For example, if P1 is close to one, L ≈

∫

C2
p(x)dx, while Pe ≈

∫

C1
q(x)dx. Thus, the Laplacian pdf distance emphasizes to cluster the most un-

likely data points correctly. In many real world applications, this property may be
crucial. For example, in medical applications, the most important points to classify
correctly are often the least probable, such as detecting some rare disease in a group
of patients.

6 Conclusions

We have introduced a new pdf distance measure that we refer to as the Laplacian
pdf distance, and we have shown that it is in fact a clustering cost function in a
kernel feature space determined by the eigenspectrum of the Laplacian data matrix.
In our exposition, the Mercer kernel and the Parzen kernel is equivalent, making
it possible to determine the Mercer kernel based on automatic selection procedures
for the Parzen kernel. Hence, the Laplacian data matrix and its eigenspectrum can
be determined automatically too. We have shown that the new pdf distance has an
interesting property as a risk function.

The results we have derived can only be obtained analytically using Gaussian ker-
nels. The same results may be obtained using other Mercer kernels, but it requires
an additional approximation wrt. the expectation operator. This discussion is left
for future work.
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