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Abstract. Nonlinear principal components analysis is shown to generate some 
of the most common criteria for solving the linear independent components 
analysis problem. These include minimum kurtosis, maximum likelihood and 
the contrast score functions. In this paper, a topology that can separate the inde-
pendent sources from a linear mixture by specifically utilizing a Gaussianizing 
nonlinearity is demonstrated. The link between the proposed topology and 
nonlinear principal components is established. Possible extensions to nonlinear 
mixtures and several implementation issues are also discussed. 

1   Introduction 

Independent components analysis (ICA) is now a mature field with numerous ap-
proaches and algorithms to solve the basic instantaneous linear mixture case as well 
as a variety of extensions of these basic principles to solve the more complicated 
problems involving convolutive or nonlinear mixtures [1-3]. Due to the existence of a 
wide literature and excellent survey papers [4,5], in addition to the books listed 
above, we shall not go into a detailed literature survey. Interested readers are referred 
to the references mentioned above and the references therein. 

In this paper, we will focus on a special type of homomorphic transformation, 
called the Gaussianizing function. Several interesting observations about this trans-
formation and its utility in ICA will be addressed in this paper. Especially, we will 
establish a link between a Gaussianizing function based topology for solving linear 
instantaneous mixture problems and the established technique of nonlinear principal 
components analysis (NPCA) [6], which has already been shown to encompass a 
number of linear ICA optimization criteria as special cases [1] corresponding to cer-
tain choices of the nonlinear functions of projection. Nevertheless, the selection of 
these nonlinear projection functions stemming from the principal of mutual inde-
pendence has not been yet addressed. Determining such a function is intellectually 
appealing since “mutual information is a canonical contrast for ICA” [7]. Finally, we 
would like to stress that the goal of this paper is not to present yet another linear ICA 
algorithm, but to demonstrate an interesting selection of the nonlinearity in NPCA as 
this method is applied to  solving the ICA problem. 
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2   Gaussianizing Transformations 

Given an n-dimensional random vector Y with joint probability density function (pdf) 
pY(y), there exist many functions g:ℜn→ℜn such that Z=g(Y) is jointly Gaussian. In 

particular we are interested in the elementwise Gaussianization of Y. Suppose Yi has 

marginal pdf pi(yi), whose corresponding cumulative distribution function (cdf) is 

Pi(yi). Let φ(.) denote the cdf of a zero-mean unit-variance single dimensional Gaus-

sian variable, i.e., 
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Then, according to the fundamental theorem of probability [8], Zi=φ -1(Pi(Yi)) is a 

zero-mean and unit-variance Gaussian random variable. 
We define gi(ξ)=φ -1(Pi(ξ)) and call this the Gaussianizing transformation for Yi. 

Combining gi(.) into a vector valued function, we get the elementwise Gaussianizing 

transformation for Y as Z=g(Y). Since this g:ℜn→ℜn is acting on each argument 
separately, its Jacobian matrix is diagonal at every point in its domain. Furthermore, 
since every Zi is zero mean and unit-variance Gaussian, the vector Z is jointly Gaus-

sian denoted by G(z,�) with zero mean and covariance 
















==

1

1

][

ji

ij
TE

ρ

ρ
�ZZ

 

(2) 

The utility of this Gaussianizing transformation was pointed out earlier for multi-
dimensional pdf estimation [9]. Clearly, if one estimates the marginal pdfs of Y and 
the covariance of Z after Gaussianizing Y as described above, then an estimate of the 
joint pdf of Y can be obtained using the fundamental theorem of probability [8]. 
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3   Homomorphic Linear ICA Topology 

The linear ICA problem is described by a generative signal model that assumes the 
observed signals, denoted by x, and the sources, denoted by s, are obtained by a 
square linear system of equations. The sources are assumed to be statistically inde-
pendent. In summary, assuming an unknown mixing matrix H, we have 
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kk Hsx =  (4) 

where the subscript k is the sample/time index. The linear ICA problem exhibits the 
following uncertainties, which cannot be resolved by the independence assumption 
alone: permutation of separated source estimates and scaling factors (including sign 
changes). 

The goal is to recover the sources from the observed mixtures. For the sake of sim-
plicity in the following arguments, we will assume that the marginal pdfs of the 
sources and the mixtures are known and all are strictly positive valued (to guarantee 
the invertibility of Gaussinizing transformations). It is assumed without loss of gener-
ality that the sources are already zero-mean. 

Consider the topology shown in Fig. 1 as a solution to linear ICA. The observed 
mixtures are first spatially whitened by Wx to generate the whitened mixture vector x. 

Since whitening reduces the mixing matrix to only a coordinate rotation, without loss 
of generality, we can always focus on mixing matrices that are orthonormal. In this 
case, we assume that the mixing matrix is R2=WxH. Since the marginal pdfs of the 

mixtures are known, one can construct the Gaussianizing functions gi(.) according to 

the previous section to obtain the Gaussianized mixtures xg. Whitening the Gaussian-

ized mixtures will yield zero-mean unit-variance and uncorrelated signals z. Since z is 
jointly Gaussian, uncorrelatedness corresponds to mutual independence. However, 
considering the function from the sources (s) to the Gaussianized mixtures (xg) as a 

post-nonlinear mixture, we notice that although by obtaining z we have obtained 
independent components, due to the inherent rotation ambiguity of nonlinear mix-
tures in the ICA framework [10], we have not yet achieved source separation. Conse-
quently, there is still an unknown orthonormal matrix R1 that will transform z into 

Gaussianized versions of the original sources. If the marginal source pdfs are known, 
the inverse of the Gaussianizing transformations for the sources could be obtained in 
accordance with the previous section (denoted by hi(.) in the figure), which would 

transform sg to the original source distribution, thus yield the separated source signals 

(at least their estimates). 

 

Fig. 1. A schematic diagram of the proposed homomorphic ICA topology. 
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In summary, given the whitened mixtures, their marginal pdfs and the marginal 
pdfs of the sources (up to permutation and scaling ambiguities in accordance with the 
theory of linear ICA), it is possible to obtain an estimate of the orthonormal mixing 
matrix R2 and the sources s by training a constrained multilayer perceptron (MLP) 

topology with first layer weights given by R1 and second layer weights given by R2. 

The nonlinear functions of the hidden layer processing elements (PE) are determined 
by the inverse Gaussianizing transformations of the source signals. This MLP with 
square first and second layer weight matrices would be trained according to the fol-
lowing constrained optimization problem: 
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Constrained neural structures of this type have been considered previously by Fiori 
[11]. Interested readers are referred to his work and the references therein to gain a 
detailed understanding of this subject. 

4   Relationship with Nonlinear PCA 

NPCA is known to solve the linear (and nonlinear) ICA problem when the nonlinear 
projection functions are properly selected. Various choices of these functions corre-
spond to different ICA criteria ranging from kurtosis to maximum likelihood (ML) 
[1]. In the most general sense, the NPCA problem is compactly defined by the 
following optimization problem: 
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where f(.) is an elementwise function (i.e. with a diagonal Jacobian at every point) 
that is selected a priori. For the special case of f(z)=z, this optimization problem 
reduces to the linear bottleneck topology, which is utilized by Xu to obtain the 
LMSER algorithm for linear PCA [12]. 

Returning to the topology in Fig. 1, under the assumptions of invertibility (which 
is satisfied if and only if the source pdfs are strictly greater than zero1) we observe 
that z=Wzg(x) and x=R2s, therefore, the cost function in (5) is 

]||))(([|| 2sRgWRhRsR 2z122 −E . Being orthonormal, R2 does not affect the 

Euclidean norm, and the cost becomes ]||))(([|| 2sRgWRhs 2z1−E . In the ICA set-

ting, s is approximated by its estimate, the separated outputs y, which is the output of 
the h(.) stage of Fig. 1. In the same setting, assuming whitened mixtures, NPCA 
would optimize 

                                                           
1  In the case of zero probability densities, the Gaussianizing functions will not be invertible in 

general, since locally at these points the Jacobian might become singular. However, since the 
probability of occurrence of such points is also zero for the same reason, for the given signal-
mixture case global invertibility is not necessary. However, it is assumed for simplicity. 
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where y=Wx, in accordance with (6) [1]. A direct comparison of (7) and the expres-
sion given above that is equivalent to (5) yields ))(()( yRgWRhyf 2z1= . 

In summary, the homomorphic ICA approach described in the previous section 
and formulated in (5) tries to determine a nonlinear subspace projection of the sepa-
rated outputs such that the projections become independent. While an arbitrary selec-
tion of the nonlinear projection functions would not necessarily imply independence 
of the separated outputs, the proposed approach specifically exploits homomorphic 
Gaussianizing transformations of the signals such that orthogonality (uncorelatedness 
of zero-mean signals) is equivalent to mutual independence. 

5   Alternative Approaches 

The Gaussianizing transformations could be utilized in alternative linear ICA solution 
strategies. Here, we will briefly discuss a few.  The obvious approach would be to 
utilize the Gaussianizing transformation to estimate the joint density of the mixtures 
or the separated outputs. This leads to two possible approaches. 

Estimating the joint density of the mixtures: Suppose the whitened mixtures are re-
lated to the sources by x=Rs and the marginal source distributions are known. Since 
the sources are independent, the joint source distribution, denoted by pS(s), is simply 

the product of the marginals. Due to the fundamental theorem of probability, the joint 
pdf of the mixtures could be determined as pX(x)=pS(RTx). At the same time, from 

(3), we have pX(x)=G(g(x),�)|∇g(x)|. These two joint distributions must be identical, 

therefore one can determine R by minimizing any suitable divergence measure be-
tween the two representations of the mixture pdf. If the appropriate definition of Kull-
back-Leibler (KL) divergence is utilized as the measure, then the estimate would also 
be asymptotically maximum likelihood, due to the well-known relationships between 
ML and KL divergence. 

Estimating the joint density of the separated outputs: Suppose that x=Hs and y=Wx. 
Suppose that an estimate of the marginal pdfs of y is available at every step of learn-
ing iterations (nonparametric density estimations could be utilized at this stage). 
Then, one could construct the elementwise Gaussianizing functions of y to estimate 
its joint density using (3). The separation matrix W can be optimized to minimize the 
mutual information in y estimating Shannon’s definition using the nonparametric 
marginal and joint distribution estimates of y. 

6   Extension to Nonlinear Mixtures 

With some modifications, the topology shown in Fig. 1 could also be utilized to ob-
tain independent components from mixtures generated by invertible nonlinear func-
tions of the sources. In fact, given any n dimensional random vector x (regardless of 
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it being generated from independent sources or not) one can determine n independent 
components. A proof of existence is provided in [10]. A much simpler proof of exis-
tence is as follows: Given x, z=Wzg(x) are independent components, where Wz and 

g(.) are obtained as described above and in Fig. 1. In [10], the rotation ambiguity of 
nonlinear ICA is also addressed. This ambiguity is also readily observed in Fig. 1. 
Since z are independent components, R1z for any orthonormal matrix R1 also yields 

independent components for x. Nevertheless, if one is not concerned about these 
ambiguities, nonlinear ICA is reduced to estimating the marginal pdfs of the mixture 
and applying whitening to the Gaussianized mixtures. 

Actual separation of sources in the nonlinear mixture case requires additional con-
straints. For example if the mixture is post-nonlinear and the source distributions are 
known, the structure in Fig. 1 can be used as described in (5) with some modifica-
tions to solve the problem. Since the nonlinearities would be absorbed by the initial 
Gaussianizing transformation g(.), similar Gaussianizing functions must be employed 
at the output stage and the desired output should be xg. The latter Gaussianizing func-

tions will be required to change at every learning iteration as they include the most 
current estimate of the nonlinearities of the post-nonlinear mixture and the following 
Gaussianizing function g(.). An approach along these lines was also proposed by 
Ziehe et al. [13]. 

7   Conclusions 

In this paper, we have presented a topology based on using Gaussianizing homomor-
phic transformations that allows handling higher order statistics by considering only 
second order statistics in the ICA problem setup. The proposed topology is extremely 
interesting in that it lies at the intersection of nonlinear principal component analysis 
and learning in neural networks with orthonormality constraints on weight matrices.  

Some alternative approaches that basically correspond to directly minimizing an 
estimate of the mutual information between the separated outputs are also sketched 
based on the density estimates obtained through the Gaussianizing transformations.  

Extensions of the proposed topology to solve nonlinear ICA problems is discussed 
with special emphasis on post-nonlinear mixtures. The proposed topology also points 
out much simpler proofs for the existence of nonlinear ICA and its rotation ambigu-
ity. 
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