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Abstract 
We have previously proposed an adaptive observer for 
general nonlinear system state estimation called the 
adaptive extended Luenberger observer. This observer is 
similar to the Kalman filter in principle. However, in 
contrast to the recursive updates of the Kalman filter, this 
observer uses stochastic gradient updates for the observer 
gains. In this paper, we demonstrate two successful 
applications of the proposed adaptive observer scheme in 
closed-loop state feedback control of realistic nonlinear 
dynamical systems. Specifically, the problems we consider 
here are air-to-fuel ratio control in internal combustion 
engines and direct vector control of an induction machine. 
 
 
1. Introduction 

 
 State estimation for time-varying nonlinear systems has 
been an important subject in control systems research, since 
the well-known solution to the optimal state estimation 
problem for linear systems under Gaussian noise has been 
presented by Kalman [1]. The Kalman filter provides the 
optimal state estimates in the minimum output prediction 
mean-square-error (MSE) sense for the given situation. The 
extensions of the idea to nonlinear systems and non-
Gaussian noise scenarios include the standard extended 
Kalman filter (EKF) [2], analytical design efforts [3-5], and 
numerical approaches like the unscented Kalman filter 
(UKF) [6] and the particle filters (PF) [7].  

The adaptive extended Luenberger observer (ELO) 
follows the mean-square-error optimality principle as in the 
Kalman filter framework, however, due to the difficulties in 
analytically updating the observer gains in a recursive 
manner in the nonlinear setup, the updates are performed 

using the stochastic gradient approach [8]. More detail on 
this observer scheme will be given in the following sections. 
At this point, it suffices to mention that for the linear system 
case, the relationship between the proposed adaptive 
observer and the Kalman filter becomes analogous to that of 
the least-mean-square (LMS) and recursive least squares 
(RLS) algorithms in adaptive filtering theory. The two 
algorithms, LMS and RLS, tackle the same problem using 
stochastic gradient updates and recursive optimal solution 
update, respectively. Both have their own advantages and 
disadvantages: Specifically, given noise-free input 
measurements, RLS tracks the optimal solution at every 
iteration, thus has much faster convergence properties. 
Nevertheless, while being relatively slower in convergence, 
LMS has added robustness properties when noisy input 
signals are available [8]. This property of LMS is not 
currently well understood in adaptive filtering theory, 
however, we would expect the ELO to demonstrate similar 
performance improvements under model uncertainty.1 
 In this paper, we will present two state-feedback control 
case studies using realistic models of internal combustion 
engines and induction machines. First, a brief overview of 
the ELO algorithm will be presented. Then, the closed-loop 
control of an internal combustion engine and an induction 
machine using state estimates obtained from ELO will be 
demonstrated. 
 
2. Extended Luenberger Observer 
 
 Consider a general discrete-time, nonlinear and time-
varying system of the form 

                                                 
1 This paper will not focus on the investigation of robustness to model 
uncertainty issues of AELO. That study will be presented elsewhere. 
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where there are m inputs, n states, and l outputs. Although 
the system is nonlinear, we will still assume that a linear 
correction term will be sufficient to guarantee the asymptotic 
convergence of the state estimation error. Hence, the 
observer dynamics are 
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The ith column of the observer gain matrix Lk is updated 
using the (approximate) stochastic gradient for output 
prediction error )~( kkk yy −=e  according to 2 
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where 1nxn is an all-ones square matrix of size n [9]. In (3), fx 
and hx denote the Jacobians of the system equations with 
respect to the state vector. 
 
3. Air-Fuel Ratio Control 
  
 In this section, we will demonstrate the performance of a 
closed-loop air-fuel ratio (AFR) control system for an 
internal combustion (IC) engine. This problem is of practical 
importance for the efficiency of the exhaust treatment 
system as manufacturers are mandated to observe strict 
regulations on exhaust emissions. In order to ensure the 
maximum conversion efficiency, it is required to keep the 
ratio of air mass and fuel mass in each cylinder at 
stoichiometry. Denoting the stoichimoetric AFR by AFRs, 
the normalized AFR is 

 
sf

a
AFRm

m 1
=λ  (4) 

The goal of the AFR control problem is to keep λ as close as 
possible to unity. The difficulty arises from the fact that 
airflow dynamics are nonlinear and nonstationary. In 
addition, the event-based nature of the reciprocating engine 
introduces long time delays into the control problem. These 
delays limit the achievable closed-loop bandwidth by 
feedback, but this limitation can be circumvented by 
employing an observer to estimate the states of the plant. 

                                                 
2 The actual gradient is slightly more complicated since it takes 

 into account. However, for a small step size the additional 
terms are negligible. 

1/ −∂∂ kk LL

 In designing engine control systems, often mean value 
engine models are used. These models describe the mean 
engine state behavior over an engine cycle. These models 
can be constructed in time- or crank-angle domains; the 
transformation between these models is given by 

Nt 6/θ∂=∂ , where θ is the crank-angle in degrees and N is 
the engine speed in rpm [10,11].  
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2.1. Internal Combustion Engine Model 
 
 Assuming the time-domain approach, the discrete time 
mean-value model for an IC engine is given by (4). This 
model consists of 8 states, 2 inputs, and 1 output. The states 
are the manifold pressure (Pm), manifold temperature (Tm), 
wall-wetting mass (mfp), time-delay associated with the 
transportation of the air-fuel charge within the cylinder and 
the exhaust system from the intake stroke to the AFR sensor. 
The inputs are throttle angle and injected fuel mass. The 
output is the measured AFR. 
 The amount of delay depends on the sampling rate in the 
discrete-time system. Taking an average delay of 500o for 
the mixture to reach the exhaust port following compression 
and power strokes, including an approximate 220o for 
transportation from the exhaust port to the AFR sensor, and 
assuming a sampling rate of 180o, we obtain 720/180=4 
delay units.3 In addition, a first-order linear dynamical AFR 
sensor with a time constant of mτ  is assumed. 
 The state equations for Pm and Tm are obtained from the 
conservation of energy. Here, Vm is the manifold volume, γ 
is the specific heat ratio for air, ht is the heat transfer 
coefficient, Tw is the manifold wall temperature, R is the 
specific gas constant for air, Tamb is the ambient air 
temperature,  is the throttle air flow rate and  is the atm& acm&

                                                 
3 All angles measured in degrees here are the crank-angle degrees. 



Figure 1. Actual and estimated state values for a sequence of step
inputs (left). The state estimation errors (right). 
 

Figure 2. The normalized AFR (top-left), the control input (top-
right), the manifold pressure (bottom-left), and the manifold
temperature (bottom-right) in time. 

air flow rate to the cylinder. The airflow rate is described by 
the standard orifice equation for compressible flow 
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where g(.) is a nonlinear function and Ath is a nonlinear 
function of the throttle angle α [10,11]. The values of 
cylinder airflow rate can be obtained from steady-state 
engine mappings: 
  (6) 2
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 The fuel dynamics must also be considered, since some 
of the fuel injected to the intake port does not enter the 
cylinders immediately and is deposited on the manifold wall 
in liquid form instead. This phenomenon is called the wall-
wetting problem and can cause large deviations in 
normalized AFR if not properly compensated for. The fuel 
dynamics in (4) are derived based on a widely accepted 
wall-wetting model [12] and selecting proper parameter 
values depending on the operation regime [11], where  is 

the mass flow rate of the injected fuel, m  is the mass flow 

rate of the fuel entering the cylinder. The parameters µ

fim&

fc&

p and 
µi are generally time-varying based on the evaporation time-
constant of the fuel and the percentage of injected fuel 
hitting the wall.4 
 In order to demonstrate the estimation performance of 
ELO, we present in Fig. 1 a simulation result where various 
values of step inputs are given to the system and the AFR 
measurements are corrupted by white Gaussian noise. The 
estimation error for the states is bounded from below by the 
power of the measurement noise. 
 
2.2. AFR Control Law 
 
 The desired amount of fuel mass in each cylinder is 
simply sacfc AFRkmkm /)()( = . This can be achieved if the 
injected fuel mass is equal to 
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In practice, the controller will have access to estimates of mfp 
offered by the observer. 
 In Fig. 2, we present an example simulation result where 
this control law is implemented using the state estimates 
given by ELO. In this case study, the observer utilizes the 
discrete-time model approximation provided in the previous 
section, while the actual system is simulated in continuous-
time (using the Runge-Kutta4 integration technique). In this 
particular simulation, the worst-case deviation of the 
normalized AFR from unity is less than 7%. Such spiky 
deviations are observed to occur especially at the sudden 
transition points in the system input, which indicates that the 
cause of these unusual errors is the modeling inaccuracies of 

                                                 
4 In this paper, we will assume that the engine speed is constant at 1500 rpm 
and that the fuel dynamics are time-invariant. 



the discretized equations in approximating the continuous-
time dynamics. Hence, it is possible to reduce such errors by 
increasing the sampling time of the observer. This 
performance increase, nevertheless, will come at the cost of 
increased number of states in the model. 
 
3. Induction Motor Control 
 
 Accurate rotor flux estimation is a key requirement in the 
success of direct vector control (DVC) of induction 
machines. Therefore, it has been the subject of continued 
research in power electronics and drives. Various 
approaches including estimation theory [13] and time-
varying reduced-order observers [14] have been applied to 
solve this problem satisfactorily. In this section, we will 
demonstrate the performance of ELO in DVC of induction 
machines and compare it to that of the time-varying reduced-
order observer under no-load and low torque conditions in 
the especially difficult situation of low driving voltage (75V 
dc link voltage) and low speeds. 
 In the stator frame of reference, the continuous-time 
model of an induction machine is given by [15]: 

 (8) 
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All coefficients A and T are constants determined by the 
machine geometry. The state vector consists of stator current 
and rotor flux components in the q and d axes, as well as the 
rotor speed. The input vector consists of the stator voltages 
along these axes. The output measurements of this plant 
include the two stator current components and the rotor 
speed. For use with ELO, these equations can be discretized 
using the forward difference approximation for the time 
derivative. The state vector estimate is used for feedback and 
the control inputs are generated using PI controllers [15]. Figure 3. Desired and achieved motor speeds (rps) under no-load

by the closed-loop control system using ELO estimates (left) and
the reduced order observer estimates (right). 
 

 
Figure 4. Desired and achieved motor speeds (rps) under 10% load
by the closed-loop control system using ELO estimates (left) and
the reduced order observer estimates (right). 

In our simulation examples the dc link voltage is kept low 
(Vdc = 75V). The speed command is first set to 10% of the 
rated speed for 0.3s, then it is increased to 35% for 0.6s, and 
finally it is switched to 35% in the reverse direction for 
another 0.6s. The first case is under no load (Fig. 3) and the 
second case is under 10% of the rated load (Fig. 4) torque 
conditions for the same speed command and dc link voltage. 
For comparison, the closed-loop control system is operated 
using estimates from ELO as well as the reduced-order 
observer mentioned above. These simulation results 
(including the state vector tracking results and the 
electromagnetic torque response results not shown here for 
space considerations) demonstrate the superiority of ELO 
over the reduced order observer. 
 
4. Conclusions 
  
 The adaptive extended Luenberger observer scheme is 
described in this paper. This observer uses the same 
optimality principles as the Kalman filter and the same 
stochastic gradient approach for the highly appreciated LMS 
algorithm in adaptive filtering theory. The use of a stochastic 
gradient approach allows a seamless extension of the 
Kalman filter principles to adaptive state estimation for 
nonlinear (and possibly time-varying) dynamical systems. In 
the current version of the adaptive ELO, the noise 
covariances are assumed to be identity. However, in the case 
of spatially colored noise vectors, the criterion and the 
associated update rule can be modified accordingly to yield 
asymptotically optimal performance. 
 We have demonstrated the power of this adaptive 
observer algorithm in two realistic closed-loop control 
problems: internal combustion engine air-to-fuel ratio 
control and direct vector control of induction machines. In 
both applications, the proposed observer performed 
satisfactorily without any need for initial parameter 
selections or fine-tuning of any coefficients. The only 
parameter to be selected is the stochastic gradient step size, 
which presents a trade-off between adaptability power and 
estimation accuracy. 
 Future work will demonstrate the necessary modifications 
and the performance under spatially colored and non-
Gaussian noise scenarios. In addition, stability conditions 
and convergence dynamics of the adaptive nonlinear 
observer will be studied. There exists a broad literature 



about designing nonlinear Luenberger observers under the 
gain scheduling framework. The stability conditions derived 
in this literature are expected to either readily apply to the 
adaptive ELO or be valid with minor modifications. 
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