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Abstract- Brain Machine Interfaces (BMI) have been 
designed using linear or non-linear models that are 
trained with cortical neuronal firing activity to learn the 
transfer function to associated behavior, most often the 
hand position of a primate. BMIs with linear models have 
shown good performance in modeling the transfer 
function, however they are not free of shortcomings; one 
of the important ones is the massive disparity between the 
dimensionality of the input (number of channels times the 
number of delays) and output (2 or 3-D hand coordinates) 
leading to poor generalization. On the other hand, non-
linear models like the Recurrent Multi-Layer Perceptron 
(RMLP) can potentially provide parsimonious mapping 
functions that generalize better because the input 
dimensionality is just the number of channels. However, 
the caveat is that the simplicity of the training mechanism 
is lost, which can be critical for practical use of a BMI. 
This paper bridges the gap between superior performance 
per trained weight and model learning complexity. 
Towards this end, we propose to use Echo State Networks 
(ESN) to transform the neuronal firing activity into a 
higher dimensional space and then derive an optimal 
sparse linear mapping in the transformed space to match 
the hand position. The sparse mapping is obtained using a 
weight constrained cost function whose optimal solution is 
determined using a stochastic gradient algorithm. We will 
show correlation coefficient performance comparable to 
the Wiener filter with tremendous savings in the training 
complexity, thereby paving the way for easier hardware 
implementation.  
 

I. INTRODUCTION 

 
Design of optimal Brain Machine Interfaces is a 

challenging problem that has attracted the attention of several 
research groups throughout the world. In their widely 
acclaimed article, Wessberg et al showed that, it is possible to 
predict the hand position of a primate by using linear and 
non-linear models on the cortical neuronal firing activity [1]. 
Since then, over the past few years, BMI research groups 
have adopted diverse modeling frameworks [1-8] with the 
ultimate goal of translating brain activity into a prediction of 
animal behavior. The models are usually derived using 

classical Mean-Squared Error (MSE) criterion, where the 
error is measured as the Euclidean distance between the 
model outputs and behavior output (hand position). The 
inputs to these models are usually multidimensional neural 
recordings collected from selected regions of a monkey’s 
brain. In the linear modeling category, researchers have used 
Wiener filters [9] that are estimated using regression methods 
[1,6,8]. Linear models have been quite popular owing to their 
simplicity and the availability of simple and robust learning 
algorithms. However, the limitation of linear mappings may 
hinder performance, especially in cases where the transfer 
function between brain activity and hand position becomes 
nonlinear. Furthermore, these models have huge number of 
parameters (in the thousands) and the cost function is unable 
to properly select inputs, thereby degrading their 
generalization ability. An obvious solution would be to use 
non-linear models (neural networks) for BMIs. Typical non-
linear models that have been used are non-linear Kalman 
filters [3], Time-Delay Neural Networks (TDNN), Recurrent 
Multi-Layer Perceptrons (RMLP) [6], particle filters [3] and 
nonlinear mixture models [7]. Remarkably, these models 
show only a slight improvement in performance for the 
experimental paradigms tested, but they can be designed with 
more parsimonious architectures (fewer weights) [10]. 
However, the improvement in performance is gained at the 
expense of a significant leap in the computational costs of 
training these models. The problem is accentuated by the fact 
that these models may have to be re-trained occasionally to 
adjust to the changing statistics and environment. This can 
severely restrict practical, real-world application of BMIs. 

In this paper, we propose a different architecture that has 
performance similar to that of an RMLP, but the training has 
linear complexity as opposed to the back-propagation through 
time (BPTT) RMLP training algorithm [11]. With respect to 
the Wiener filter it has fewer weights, however this new 
architecture opens the way to easily extract in parallel  
different output variables (e.g. hand position, velocity, 
griping force) from the same system state, creating a more 
flexible BMI system. At the core of the architecture is an 
Echo State Network (ESN) [12], which will be described 
briefly in the next section. The outputs of the ESN are then 
linearly combined by a sparse matrix. This will be discussed 
in section III of the paper followed by the experimental 



section in section IV, where we will design a BMI using this 
architecture. We will briefly show comparisons with other 
BMIs reported in literature. W wBb2B  
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II. ECHO STATE NETWORKS: A BRIEF OVERVIEW 

 
uBnB Echo State Networks (ESN) are recurrent networks with 

fixed weights but nonconvergent dynamics. First proposed by WBinB dByB 

Jaeger [12], ESNs are appealing because of their 
computational abilities and simplified learning mechanisms. 
ESNs exhibit some similarities to the “Liquid State Machines 
(LSM)” proposed by Maas et al [13], which possess universal 
approximation capabilities in myopic functional spaces. In 
this section, we will briefly summarize the basic principles of 
an ESN. Detailed material on ESNs can be found in [12]. The 
fundamental idea of an ESN is to use a “large reservoir” 
recurrent neural network (RNN) that can produce diversified 
representations of an input signal, which can then be 
instantaneously combined in an optimal manner to 
approximate a desired response. Fig. 1 shows the block 
diagram of an ESN. A set of input nodes denoted by the 
vector  is connected to a “reservoir” of N discrete-
time recurrent networks by a connection matrix 

. At any time instant n, the readout (state 
output) from the RNN reservoir is a column vector denoted 
by . Additionally, an ESN can have feedback 
connections from the output to the RNN reservoir. In fig.1, 
we show two outputs (representing the X-Y Cartesian 
coordinates of the primate’s hand) and the associated 
feedback connection matrix, . The 
desired outputs form a 2-D column vector d . 
The reservoir states are transformed by a static linear mapper 
that can additionally receive contributions from the input u . 
Each processing element (PE) in the reservoir can be 
implemented as a leaky integrator (first order gamma 
memory [14]) and the state output or the readout is given by 
the difference equation in (1). 
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           Figure 1. Block diagram of an Echo State Network 
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where, 10 << µ  is the step-size used for converting a 
continuous-time leaky integrator into a discrete-time 
difference equation, C is the time constant and a is the decay 
rate [12]. The point-wise non-linear function  is chosen 
to be the standard tanh sigmoid, i.e.,f(.) = tanh(.). Note that, if 

(.)f

 ,, Cµ and a are all equal to unity, the RNNs default to the 
conventional non-linear PE [14] without memory. From a 
signal processing point of view, the reservoir creates a set of 
bases functions to represent the input, while the static mapper 
finds the optimal projection in this space. There are obvious 
similarities of this architecture to kernel machines, except 
that the kernels here are time functions (Hilbert spaces).  

We will now give the conditions under which an ESN can 
be “useful,” which Jaeger aptly calls as the “Echo State 

Property.” Loosely stated, the Echo State Property says that 
the current state is uniquely defined by the past values of the 
inputs and also the desired outputs if there is feedback. A 
weaker condition for the existence of echo states is to have 
the spectral radius of the matrix  less 
than unity [12]. Another aspect critical for the success of 
ESN is to construct a sparse matrix W. This will ensure that 
the individual state outputs have different representations of 
the inputs and desired outputs or in other words, the span of 
the representation space is sufficiently rich to construct the 
mapping to the desired response.  
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We will now shift our focus to the last block of the ESN, 
i.e., the linear mapper and defer the discussion on the aspects 
related to training and testing with ESNs to the experimental 
section IV. 

In most engineering applications of ESN, e.g. system 
identification and prediction [15], the optimal linear mapper 
(see fig.1) is obtained using standard recursive algorithms for 
MSE minimization. However, when the number of RNNs (N) 
in the reservoir is very high, the dimensionality of the input to 
the linear mapper increases. The problem will only be 
worsened if we allow connections between the input nodes 
and the linear mapper. Additionally, if the desired signals are 
in a lower dimensional space as in our case, increasing N will 
easily result in over-fitting. This calls for explicit 
regularization in the estimation of the optimal linear mapper. 
It is known that L1 norms are preferable to L2 norms for this 
goal [11]. Adaptive weight decay using cross-validation is 
also widely used for zeroing the weights that make little or no 
contribution to the cost. However, having a separate cross-
validation set may not be feasible for real world applications 
that require repeated training. In the next section, we will 
present an on-line scheme that introduces constraints on the 
MSE criterion to result in an optimal and sparse linear 
mapper.  
 

III. SPARSE-LMS ALGORITHM 
 

Let the linear mapper (assume single output for now) be 



denoted by the weight vector w . Consider the Liiw ....1}{ ==
cost function in equation (2). 
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The first term is the regular Mean-Squared Error (MSE) and 
the second term is the constraint. The error e  is the 
difference between the desired signal and the output 

. The constraint fixes the sum of the p
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of the absolute values of the individual elements wi of the 
weight vector w to a constant denoted by α. Note that, with 

, we will be constraining the  norm of the weight 
vector  This is by far the most widely used explicit 
sparseness measure. The penalty factor is denoted by λ. 
Instead of fixing the penalty term, we can include λ as an 
adaptive parameter in the cost function. In order to estimate 
λ, we modify the cost function in (2) as,  
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where, β is a positive stabilization constant that keeps the 
penalty factor λ bounded. The cost function in (3) is often 
known as the augmented Lagrangian in optimization 
literature [16]. The stationary points are obtained by using 
standard gradient methods. The stochastic gradients of the 
cost are, 
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We will simultaneously minimize and maximize (3) with 
respect to w and λ respectively. The stochastic gradient 
algorithm for online adaptation of the free parameters is then 
given by the pair of equations, 
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where, wη  and λη  are small positive step-sizes, denotes 
the i

kiw
th

 element in the vector w  and  denotes the ik kix th
 

element in the vector . Allowing, kx kk λλ =1+  as ∞→k , it 
is easy to see that the sequence { }kλ  converges to a value 

given by, *λ
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where,  is the asymptotic weight vector obtained from (5).  *w
 
A. Convergence of λ: For stable asymptotic convergence of 
the penalty sequence to zero, i.e., , a necessary 

condition is 
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becomes kλ , where ck  is the expression for 
the constraint. By letting λk+1 = λk, as k→∞, it is obvious that 

0lim =
∞→

kk
c  and consequently, the Lagrangian converges 

to zero.  
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Proofs of convergence of w are fairly involved and are 
beyond the scope of this paper. It will suffice to say that the 
step-size parameter  plays a crucial role in the tradeoff 
between the speed of convergence and misadjustement in the 
final estimate. A more robust update for w can be obtained by 
including a normalization term (similar to the NLMS 
algorithm) as shown in (8). Note that the normalization is just 
done on the gradient of the MSE part of the cost function. 
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The constant σ is a small positive number used to avoid 
possible divisions by zero.  
 
B. Selection of β, α and p 
β is a positive stabilization constant that affects the 

convergence of the Lagrangian λ. It also acts as a balancing 
factor, weighing the constraint term against the MSE. A very 
high β will prioritize the constraint part of the cost function 
and the resulting residual MSE will be fairly high. On the 
other hand, a smaller β will tend to emphasize the MSE part 
and the constraint will not be strictly satisfied in the final 
estimate of w. In the experiments, we usually choose β in the 
interval [1-5].  

The remaining constants α and p are tied with the definition 
of sparseness. Typically, both p and α are chosen to be unity. 
If α is made zero, there is a good chance of the weights 
converging to an all zero vector. To prevent this, β should be 
scaled down appropriately. Also, the selection of α should be 
based on the dimensionality of the input. In our experiments, 
we choose α in the range [0.5,1], for input data dimensions 
less than 200 and up to 1.5 if the dimensionality exceeds 200.  
 

IV. BRAIN MACHINE INTERFACE DESIGN 
 

In this section, we will combine ESN with the sparse-LMS 
algorithm (eqs. 6 and 8) to decode the neural activity of a 
primate onto 2-D hand positions.  
 
A. Experimental Setup 

The data for these experiments were collected in the 
Nicolelis primate laboratory at Duke University. Microwire 
electrode arrays [17] were chronically implanted in the dorsal 
premotor cortex (PMd), supplementary motor area (SMA), 
primary motor cortex (M1, both hemispheres) and primary 



somatosensory cortex (S1) of an adult female monkey 
(Macaca mulatta) while performing a hand-reaching task. 
The task involved the presentation of a randomly placed 
target on a computer monitor in front of the monkey. The 
monkey used a hand-held manipulandum (joystick) to move 
the computer cursor so that it intersects the target. While the 
monkey performed the motor task, the hand position was 
recorded in real time along with the corresponding neural 
activity from multiple channels [8].  

In the modeling analysis presented here, 185 neurons were 
monitored; the neuronal spike events were then binned 
(added) in non-overlapping windows of 100ms and the 
behavioral datasets were downsampled and lowpass filtered 
to 10Hz. This data set was segmented into two exclusive 
parts: 5,400 samples for model training and 3,000 samples for 
model testing. The test data block is contiguous to the 
training data. 

 
B. Design of the Echo State Network 

One of the important parameters in the design of the ESN 
is the number of RNN units in the reservoir. We performed 
several experiments and finally decided to choose N=800. 
Increasing N further did not result in any significant 
improvement in performance. The input weight matrix 

(185x800) was fully connected with all the weights fixed 
to unity. The recurrent connection matrix W was sparse with 
only 1% of the weights (randomly chosen) being non-zero. 
Moreover, we fix all the non-zero weights to a value 0.5. 
Further, each RNN is a gamma delay operator (see eqn. 1) 
with parameters {a, C, µ} = {1,0.7,1}. The next aspect is to 
set the spectral radius, which is crucial for this problem as it 
controls the dynamics and memory of the echo-states. Higher 
values are required for slow output dynamics and vice-versa 
[12]. We observed that the trajectories in the X direction were 
faster than those in Y by a simple zero-crossing test. This 
would motivate the use of two different ESNs specifically 
chosen to satisfy the individual dynamics. The fact that we 
have two models learning X and Y directions independent of 
each other makes us believe that, it would be a feasible 
approach. The only drawback however, is the requirement of 
additional memory and hardware to accommodate two ESNs. 
For the experiments in this paper, we utilized a single ESN 
whose spectral radius was tuned to 0.79. Marginal changes 
(<1%) in performance (both X & Y) were observed when this 
parameter was altered by . We also turned off the 
connections from the output to the RNN reservoir and the 
direct connections between the inputs and the linear mapper.  

inW
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The network state is set to zero initially. The training inputs 
were forced through the network and the states were updated 
using (1). The first 400 echo state outputs were discarded as 
transients. The remaining 5000 state outputs were used to 
train the linear mapper.  
 
C. Design of the Linear Mapper Using Sparse-LMS 

The outputs from the RNN reservoir and the corresponding 

hand positions were used as training inputs and desired 
outputs respectively. The linear mapper is a matrix 
comprising of two column vectors wx, wy, each of length 800. 
The constraint parameters p, α were set to 1 and 1.5 
respectively. The step-sizes for the weight (8) and the 
Lagrangian updates (6) were both chosen to be 1e-3 and β 
was set to unity. The training was done for 20 epochs (an 
epoch is one presentation of the whole training) after which 
we did not observe any significant reduction in the MSE.  

Once the training was completed, the weights were fixed 
and the BMI was tested on novel data. The test data is once 
again driven through the echo state network and the state 
outputs are fed to the linear mapper.  

 
D. Results and Discussions 

Fig.2 shows the evolution of the Lagrangian term λk. 
Clearly, they converge to zero, which implies that the final 
weight vectors satisfy the imposed L1 norm constraints. Fig.3 
shows the learning curve or the plot of the MSE versus the 
number of training epochs. The residual MSE for the X 
direction is slightly more than that of the Y direction. A 
histogram of the weight vectors is plotted in fig. 4. Observe 
that most of the weights are concentrated around zero, which 
demonstrates the sparseness of the weight vectors. Fig.5 
shows the performance of the models on test data. Only the 
first 500 samples out of 3000 are shown here for clarity. The 
outputs of the linear mapper were then lowpass filtered by a 
4th order Butterworth filter with normalized cutoff frequency 
of 0.2. The low pass filtering smoothens the output. This is a 
requirement for the BMI in [8] as it interfaces to a robot arm. 
The two subplots show the outputs in the X and Y direction 
respectively. We see that, in this particular epoch, the 
performance along Y is better and is evident from the overall 
correlation coefficients of {0.64, 0.78} for X and Y directions 
respectively. In order to get a closer view of the matching 
between model outputs and the desired signals, we calculated 
the short-term correlation coefficients over non-overlapping 
windows of 100 samples. These are shown in fig. 6 for both 
X and Y directions. It is clear that the short-term correlation 
coefficients are time varying for X and the model performs 
better only in short patches. However, the same behavior has 
been reported for other linear and non-linear models applied 
to this data [8]. Further research is required to uncover the 
reasons for this behavior, which might lie within the data. 

In order to compare the performance of the proposed BMI 
modeling scheme, we trained a linear filter on the delayed 
versions of the neuronal data. Ten tap delays were used for 
each channel (totally 185x10) resulting in an overall input 
dimensionality of 1850. The same data sets were used for 
both training and testing. The correlation coefficients for the 
X and Y directions with this model were {0.64, 0.75}. The 
RMLP has fewer free parameters (185 inputs-5 hidden nodes-
2 output), but the BPTT training algorithm is involved. The 
simple linear model has 3700 trainable parameters, the 
proposed approach has roughly 800 (of the total 1600 
parameters, more than 50% were very close to zero) and the 



 

RMLP has 960. By using standard weight decay, it is possible 
to reduce the number of parameters in the linear and RMLP 
models, but choosing the decay parameter is not trivial 
(requires a cross validation set for optimality), and the norm 
used is an L2 norm instead of an L1 norm, penalizing also 
large weights. The proposed sparse LMS algorithm will do 
the job of zeroing out the undesired parameters automatically 
with an L1 norm.  
 

V. CONCLUSIONS 
 

This paper presents the use of Echo State Networks 
combined with static optimal and sparse linear mappers as a 
decoding algorithm for a BMI. ESNs represent a different 
type of architecture when compared with the previous linear 
or nonlinear designs. The big appeal of ESNs is a 
representational recurrent infrastructure that brings the 
information from the past of the input into the present sample 
without adapting parameters. The short-term memory of the 
ESNs is designed apriori and the neuronal data is processed 
through a reservoir of recurrent networks that are linked by a 
random, sparse matrix. Therefore, only an adaptive linear or 
nonlinear regressor (static mapper) is needed to implement 
functional mappings. As demonstrated here, they perform at 
the same level as the Wiener filter. However, the training can 
be done on-line in O(N) time, unlike the Wiener or the RMLP 
that have O(N2) training algorithms. The number of trainable 
weights is also lower than each of these networks, and more 
importantly, ESNs will scale up much better. In fact, we 
believe that the recurrent reservoir also contains information 
for velocity and force mappings, which means that different 
regressors can capture these mappings in parallel. All these 
features (performance, scalability, data requirements, and 
algorithmic complexity) will become very important for a 
practical BMI implementation. We carefully designed the 
read out portion of the ESN to guarantee maximal 
generalization. We implemented an on-line procedure that 
adaptively creates a sparse interconnection matrix based on a 
L1 norm penalty. This is novel, because weight decay uses an 
L2 norm and moreover, one has to optimally set the forgetting 
factor on a cross validation data set. Furthermore, the savings 
in the training time and computational complexity with the 
proposed approach are tremendous. ESNs hold the promise of 
better performance and also of better implementation 

           Figure 6.  Windowed correlation coefficients       Figure 2.  Convergence of the Lagrangian terms λ 

Figure 3.  Learning curve  

    Figure 4.  Histogram of the weights  

Figure 5. Model output and the desired output



characteristics for real-time BMIs. However, the claim has to 
be quantified on different data sets and the overall 
generalization ability has to be observed. Additionally, the 
selection of optimal ESN parameters is critical and there are 
no systematic procedures currently available. Future work 
will be focused on these issues and also on exploring other 
statistical mechanisms of optimally combining the echo state 
outputs.  

Lastly, we would like to mention the appeal of the ESN as 
a model for biologically plausible computation. If one thinks 
of the echo states as neuronal states, we can see how a 
distributed, recurrent topology is capable of representing 
information about past inputs into a diffuse set of states 
(neurons). For the most part, the interconnectivity and the 
value of the weights (synapses) are immaterial for 
representation. They become however critical for readout 
(approximation). In this respect, there are very close ties 
between ESN and liquid state machines, as already 
mentioned by Maas. These ideas may become useful in 
developing new distributed paradigms for plasticity and 
characterization of neuronal response in motor cortex. 
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