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Abstract. Linear system identification with noisy inputs is a critical problem 
in signal processing and control. Conventional techniques based on the Mean 
Squared-Error (MSE) criterion can at best provide a biased estimate of the 
unknown system being modeled. Recently, we proposed a new criterion called 
the Error Whitening Criterion (EWC) to solve the problem of linear 
parameter estimation in the presence of additive white noise. In this paper, we 
present a fixed-point type algorithm with O(N2) complexity for EWC, called 
the Recursive Error Whitening (REW) algorithm. We will also show that the 
EWC solution can be solved by using the computational principles of Total 
Least-Squares (TLS). A novel EWC-TLS algorithm with O(N2) complexity is 
derived. We will then apply the EWC methods for adaptive inverse control 
and show the superiority over existing methods.  
 
 
INTRODUCTION 
 

Mean-squared Error (MSE) has been around for many years and has been 
widely applied for a variety of signal processing and control applications [1], [2]. 
Inverse control and system identification are some of the key applications in 
automatic control where MSE plays a vital role. System identification is the 
problem of estimating the parameters of an unknown system using the observed 
input and output sequences [3]. The objective of inverse control is to design a 
controller that would work in tandem with the actual system to produce a desired 
reference output [2]. The existence of cost effective and efficient algorithms like 
the stochastic Least Mean-Squares (LMS) [4] and the Recursive Least Squares 
(RLS) [1] has benefited the extensive application of the MSE criterion for system 
identification and control. However, in the presence of additive disturbances (both 
correlated and white) on the input and the output signals of interest, MSE can at 
best provide a biased solution. Noise-free data are seldom available for many real-
world applications. Depending on the type of application, several noise 
enhancement methods exist in literature. Subspace Wiener filtering [1] is a 
powerful data conditioning technique based on Principal Subspace Analysis 
(PSA). However, this solution is too expensive and suffers from the curse of 
dimensionality. Total Least Squares (TLS) on the other hand, can provide us with 
bias-free solutions in the presence of additive white noise [5]. But, TLS requires 
the variances of the disturbances on the input and output data to be the same. If 



this criterion is not met, TLS can give biased solutions [6]. The Instrumental 
Variables (IV) method proposed as an extension to the Least-Squares (LS) has 
been previously applied for parameter estimation in white noise [3]. This method 
requires choosing a set of instruments that are uncorrelated with the noise in the 
input. Recently, we proposed a novel criterion called the Error Whitening 
Criterion (EWC), which can produce unbiased parameter estimates of a linear 
system in the presence of additive white noise [7,8]. Instead of minimizing the 
mean-squared error, the EWC formulation enforces zero autocorrelation of the 
error signal beyond a certain lag, and hence the name Error Whitening Criterion 
(EWC). As a consequence, the IV method mentioned before appears as a special 
case of EWC. In the next section, we will briefly summarize the criterion using a 
system identification framework and then propose a recursive adaptive technique 
for EWC called Recursive Error Whitening (REW) algorithm. 
 
 
ERROR WHITENING CRITERION IN A SYSTEM ID FRAMEWORK 
 

Consider the problem of identifying a linear system characterized by the 
parameter vector  as shown in fig 1. Let  denote the actual input 
and output of the system. Further, we will model the measurement errors and 
system disturbances by uncorrelated additive white noise sequences  and  
(with unknown variances) that appear at the output and input of the system 
respectively. The problem of system identification can now be stated as follows: 
Given the noisy data pair  where x  and 

, we have to determine the parameter vector  that best 
describes the underlying system. Without loss of generality, we will assume that 
the length of  is at least N, the number of parameters in the actual system or 

. Since d , the error is . Defining a 
vector ε , the error autocorrelation at some arbitrary lag 
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LkkE −xx  is full rank, 0)(ˆ =Leρ only when Tww =  [7,8]. Therefore, if we make 

the error autocorrelation at any lag ML ≥  zero, then the estimated weight vector 
will be exactly equal to the true weight vector. In other words, the criterion tries to 
whiten the error signal for lags greater than or equal to the adaptive filter length, 
i.e., 0=)(ˆ Leρ  for ML ≥

)L−
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and hence the name Error Whitening Criterion. 
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where,  is a constant. It is easy to see that when 5.0−=β , (2) reduces to the 
error autocorrelation . The goal is to find the weight vector  that would 
make  with 

w
. Note that when 0 , (2) reduces to the MSE 

cost function. We will now derive the Recursive Error Whitening (REW) 
algorithm that optimally estimates the stationary point of the EWC cost function.  
 
 
RECURSIVE ERROR WHITENING (REW) ALGORITHM 
 

We will begin this section by defining some matrices that will be used 
throughout the rest of the paper. Define input correlation matrices as , 

, , and  for noise-
free and noisy signals (denoted by capped variables). Further, the input noise 
vector autocorrelation matrices are  and V . 

Additionally, we will define the   matrices S  and S . The 
dot is used to symbolize difference between the current and L
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vector/scalar, for example, x . We will also define cross-correlation 
vectors between the input vector and the desired signal as P ][ kk dE x= , 

, k , and P  for both 

noise-free and noisy data. Also, we will define vectors Q  and 

. Using the above definitions, we can rewrite in (2) as, 
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The above equation can be easily derived by substituting e and 

 in (2). Taking the gradient with respect to w and equating to zero, 
we get, 

wxT
kkk d ˆˆ −=

wxT
kkk de ˆˆˆ &&& −=

0QPwSR
w
w

=+−+=
∂

∂
)ˆˆ(2)ˆˆ(2

)(
ββ

J
                                      (4) 

Then the optimal weight vector is given by, 
)ˆˆ()ˆˆ( 1 QPSRw* ββ ++= −                           (5) 



When 0=β , (5) reduces to the minimum MSE solution. Simple calculations 

show that S  and . Also, the noisy correlation matrices are 
related to the noise-free signal and noise correlation matrices through the 
following set of equations. 
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Using (6), the optimal weight vector can be simplified as, 
[ ] [ ]LLL PPVRVRw ββββ −++−++= − )21()())(21( 1

*                 (7) 
For ML ≥  and 5.0−=β , we immediately see that all the noise matrices in the 

above equation cancel out and the optimal solution reduces to w  which 
is nothing but the true weight vector . For the sake of notational simplicity, we 
will consider the noise-free case to derive the Recursive Error Whitening (REW) 
algorithm. With 
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Recall the Sherman-Morrison-Woodbury identity, also known as the matrix 
inversion lemma [9]. 
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Notice that this recursion for the inverse of  is different than the conventional 

RLS algorithm. It requires the inversion of a 2x2 matrix ( , 
which is still trivial. With this, we are able to reduce the complexity of inverting a 
sum of two matrices from O(N
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simpler and can be expressed as, 
])21[(1 kLkLkkkkkk ddd xxxθθ −−− −−++= βββ                   (11) 

From (10) and (11), the optimal solution is given by, 
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To convert (12) into a recursive form, define a gain matrix (analogous to the 
Kalman gain in the RLS algorithm) as, 
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Substituting (11) in (12),  
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where ][ Lkkk ddd −− β; is a column vector with elements  and dkd Lkk d −− β . 
Therefore, the update equation can then be written as, 
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Defining an apriori error vector  as, 
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we can simplify (18) to give us the REW update equation, 
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A summary of the REW algorithm is shown in table 1.  

 
Table 1. Summary of the REW algorithm 
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The complexity of the REW algorithm is O(N2) which is comparable to that of 

the RLS algorithm. The fixed-point nature of the REW algorithm results in fast 
convergence. In the next section, we will derive another algorithm for computing 
the EWC solution based on the Total Least-Squares (TLS) framework.  

 
 
EWC-TLS ALGORITHM  
 

TLS is a powerful technique, which is widely used in parameter estimation 
problems in signal processing. Mathematically speaking, TLS solves an over-
determined set of linear equations of the form bAx = , where A  is the data nm×ℜ∈



matrix,  is the desired vector, and  is the parameter vector and  
denotes the number of different observation vectors each of dimension [10]. 
Alternatively, the linear equations can be written in the form , 
where  denotes an augmented data matrix. Let S be the SVD of the 
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where,  is the last element of the minor eigenvector . The Total Least-
Squares technique can be easily applied to estimate the optimal MSE solution 
using fast minor components estimation algorithms [5,11]. However, in the case of 
EWC, these algorithms cannot be applied directly to solve the optimal EWC 
solution given by w . This is mainly because of the fact that the 
eigenvalues of the augmented data matrix G (analogous to [  mentioned 
before) given by (22) can take both positive and negative values.  

                 (22) 

The term  in (22) denotes the autocorrelation of the desired signal at lag L. 
It is important to note that the matrix (22) is square symmetric due to the 
symmetry of . Hence, the eigenvectors of G are real which is highly desirable. 
We would like to stress the fact that (22) still holds even with noisy data. This is 
because, the entries of G are unaffected by the noise terms. It is trivial to show that 
the minimum eigenvalue of (22) is zero. However, as we said before, the other 
eigenvalues of G can take both positive and negative values. This can be a 
problem for iterative gradient or fixed-point type algorithms. In order to rectify 
this problem, we propose to use the matrix G2 instead of G. It is obvious that by 
squaring the matrix G, all the eigenvalues are squared, but the eigenvectors still 
remain the same. The O(N2) algorithm proposed in [5] can now be used for fast 
and accurate estimation of the minor eigenvector of G2. Nevertheless, the squaring 
operation brings in additional computational overhead resulting in O(N3) 
complexity. We will now present a simple gradient procedure with adaptive step-
size for estimating the minor component of the matrix G2. Consider the cost 
function in (23).  

)1              (23) 
If α is zero in (23), the cost reduces to the regular log energy type function that is 
typically associated with the principal components analysis algorithms. The 



parameter λ can be considered as the lagrangian and together with  
forms a penalty function that penalizes any deviation from unit norm weight 
estimates. The last term αλ

)1( −wwT

2 (α≥0) is required to limit the values of λ. This 
procedure of including additional penalty terms has been studied in optimization 
literature as penalty/barrier methods and augmented lagrangians [12]. Similar 
ideas have been applied successfully to increase the convergence speed of the 
LMS algorithm [13]. The goal is to minimize the cost function in (23) with respect 
to w and simultaneously maximize over λ. The gradients of (23) are then given by, 
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The corresponding update equations for w and λ are, 
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The terms ηw and ηλ are small positive step-sizes. The parameter α must be always 
a positive quantity significantly higher than the step-sizes. An example parameter 
set is (ηw, ηλ, α) = (0.01, 0.1, 2). Generally, the eigenspread of G2 is very high due 
to the squaring and also because of the fact that the minimum eigenvalue of G2 is 
usually close to zero. In such cases, choosing very high α (in the range 10~50) can 
be helpful. It can be shown that wk asymptotically converges to the eigenvector 
associated with the minimum eigenvalue of G2 and λ converges to zero. We will 
defer the proof of convergence to a later paper due to space constraints.  
 
Online version of EWC-TLS algorithm: The terms G2wk and can be 
directly estimated from the samples without explicitly estimating the matrix G
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method proposed in the previous section. In the next section, we will present some 
case studies including the design of an inverse controller using EWC.  
 
 
 

 



EWC CASE STUDIES 
 
System Identification: In this example, we try to identify an unknown linear 
system (FIR filter of length 4) using the proposed EWC algorithms. The input 
signal is colored and corrupted with white noise (input SNR was set at 5dB) 
whereas the desired signal is clean. We performed MonteCarlo runs using different 
input and output signals and the results of EWC algorithms, IV method and 
optimal Wiener solution are shown in fig.2. The performance measure is the norm 
of the error vector (difference between true and estimated) measured in dB. EWC-
TLS and REW algorithms outperform the Wiener solution for MSE criterion. The 
IV method also produces better results than the Wiener solution. For the IV 
method, we chose the delayed input vector as the instrument. The lag ∆  was 
chosen to be four, which is the length of the true filter. Mathematically speaking, 
the IV method computes the solution . Notice that 
there is a similarity between the IV solution and the recursive EWC solution 

. However, the EWC formulation is one that is based on the error 
whereas the IV does not have an associated cost function. One of niceties of the 
EWC solution is that the matrix  is symmetric and Toeplitz which facilitates 
robust and faster solutions. (Toeplitz matrix vector multiplications can be done in 
O(Nlog
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2N) compared to the regular O(N2) complexity). This also helps design 
robust algorithms based on the TLS framework. 
Inverse Modeling and Control Using REW algorithm: We will show the 
application of EWC for designing a model reference inverse controller. Fig. 3 
shows a block diagram of model reference inverse control [2]. Clearly, we require 
the plant parameters (which are typically unknown) to devise the controller. Once 
we have a model for the plant, the controller can be easily designed using 
conventional MSE minimization techniques. In this example, we will assume that 
the plant (AR system) transfer function is . 

The reference model is chosen to be an FIR filter with 5 taps. The block diagram 
for the plant identification is shown in fig. 4. Notice that the output of the plant is  
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the fast algorithms presented in this paper form a powerful tool that can be used in 
several engineering applications requiring accurate parameter estimation. 
Theoretical analysis of the sensitivity of the REW algorithm and the effect of input 
correlations are currently under study. 
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