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 Abstract – Proper initialization of neural networks is 
critical for a successful training of its weights. Many methods 
have been proposed to achieve this, including heuristic least 
squares approaches. In this paper, inspired by these previous 
attempts to train (or initialize) neural networks, we formulate a 
mathematically sound algorithm based on backpropagating the 
desired output through the layers of a multilayer perceptron. 
The approach is accurate up to local first order approximations 
of the nonlinearities. It is shown to provide successful weight 
initialization for many data sets by Monte Carlo experiments. 
 

I. INTRODUCTION 
 
 Due to the nonlinear nature of neural networks, training 
requires the use of numerical nonlinear optimization 
techniques. Practically feasible training algorithms are 
usually susceptible to local optima and might require 
parameter fine-tuning. There are various approaches 
undertaken to find the optimal weights of a neural network. 
These include first- and second-order descent techniques, 
which are mainly variants of gradient [1], natural gradient 
[2], and Newton [3] optimization methods. Although higher 
order search techniques could speed up convergence at the 
cost of complexity, they are still vulnerable to local minima. 
Global search procedures, such as random perturbations [4], 
genetic algorithms [5], and simulated annealing [6] are not 
feasible for practical applications due to time constraints. 
Alternative approaches to help multilayer perceptrons (MLP) 
learn faster and better include statistically proper weight 
initialization [7,8], and approximate optimization through 
heuristic least squares application [9, 10]. Although there are 
many other references to list, we cannot go into such a 
detailed review of the state-of-the-art in MLP initialization 
and training, mainly due to the limited space available. 
 As mentioned, approximate least squares solutions have 
been previously proposed to initialize or train MLPs. 
However, these methods mostly relied on minimizing the 
mean square error (MSE) between the signal of an output 
neuron before the output nonlinearity and a modified desired 
output, which is exactly the actual desired output passed 
through the inverse of the nonlinearity. This approach, 
unfortunately does not consider the scaling effects of the 

nonlinearity slope on the propagation of the MSE through the 
nonlinearity. Nevertheless, they provided the invaluable 
inspiration for the work presented in this paper, which takes 
into account the effect of weights and nonlinearities on the 
propagation of MSE through the network. Specifically, we 
present an algorithm, which we named backpropagation of 
the desired response that can initialize the weights of an MLP 
to a point with very small MSE. This algorithm is an 
approximation of the nonlinear least squares problem with 
linear least squares and is accurate up to the first-order term 
in the Taylor series expansion. We considered including 
higher order terms in the expansion, but then the utility of 
linear least squares method is not possible.  

In this paper, we first present two theoretical results that 
form the basis for the backpropagation of the desired 
response algorithm. Then, we provide the algorithm and 
demonstrate its performance with Monte Carlo experiments. 
 

II. THEORETICAL RESULTS 
 
 Notice that in the L-layer MLP architecture shown in 
Fig. 1 there are two parts that need to be investigated to 
achieve successful backpropagation of the desired output 
through the layers: linear weight matrix and neuron 
nonlinearity. For our algorithm, we require this nonlinearity 
to be invertible at every point in its range. We use the 
following notation to designate signals: the output of the lth 
layer is zl and yl before and after the nonlinearity. The weight 
matrix and the bias vector of this layer are Wl and bl, 
respectively. The input vector is x. The number of neurons in 
a layer is denoted by nl and n0 is the number of inputs. The 
training set consisting of N input-desired pairs is given in the 
form . The backpropagated desired output for the l),( L

tt dx th 

layer is denoted by dl at the output of the nonlinearity and ld  
at the input of the nonlinearity. 
 
A. Backpropagating Through a Nonlinearity 
 

Consider a single-layer nonlinear network for which the 
output is obtained from z = Wx + b and y = f(z), where f(.) is a 
vector-valued nonlinear function, invertible on its range. 
Assume that the objective is to minimize a weighted MSE 
cost function defined on the error between y and d. Let H be This work is partially supported by NSF grant ECS-9900394 and the Xunta 

de Galicia project PGIDT-01PXI10503PR. 



the weighting matrix. Then Lemma 1 describes the 
backpropagation of d through f(.). 
 Lemma 1. Let nℜ∈dz,y,

1nxℜ∈b
nℜ′− :1 f,ff,

d,  be the desired and actual 

outputs,  and  be the weight matrix and 
the bias vector, and  be the nonlinearity, 
its inverse and its derivative. Then the following equivalence 
between two optimization problems is accurate up to the first 
order of Taylor series expansion. 

nxmℜ∈W
nℜ→
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where ‘.*’ denotes element-wise vector product, )(1 dfd −= , 
and zd −=ε .  
Proof. Recall that y=f(z) and )(dfd = . Substituting the first-
order expansion εdfdfεdfz *).()()()( ′−≈−=f , we obtain 
the result. Due to space restrictions, we do not present this 
proof in detail. � 

According to this lemma, when backpropagating the 
desired response through a nonlinearity, the sensitivity of the 
output error with respect to the slope of the nonlinearity at the 
operating point should be taken into consideration. Simply 
minimizing the MSE between the modified desired d  and z 
is not equivalent to minimizing the MSE between the d and y. 
Note that if )var( d  is also small, then since the operating 
point of the nonlinearity is almost fixed for all samples, the 

 terms become redundant. Previous applications of least 
squares to MLPs did not consider the variance of d and the 
correction scale factor based on the derivative of the 
nonlinearity at the operating point. 

f ′

 
B. Backpropagating Through Linear Weight Layer 
 
 Consider a linear network given by z = Wx + b and let d  
be the desired output. In this scheme, we assume that the 
weights W and b are fixed already. The objective is to find 
the best input vector x that minimizes the output MSE. In the 
MLP context, the input vector will correspond to the output 
of the nonlinearity of the preceding layer. The result 
regarding the optimization of x in this situation is 
summarized in the following lemma. 

 Lemma 2. Let nm ℜ∈ℜ∈ z,dx ,d,  be the desired signals 

and the corresponding output signals,  and 
 be fixed weights. Then the following equivalence 

between the optimization problems holds. 
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where D is the set of allowed input values. In the MLP 
context, this set is determined by the output range of the 
nonlinearities in the network. 
Proof. The proof of this result is very similar to the derivation 
of the least squares solution for a vector from an 
overdetermined (or underdetermined) system of linear 
equations. Due to space restrictions, we do not present this 
proof in detail. � 
 In the application of this lemma, two situations may 
occur: if , then mn ≥ )()( 1 bdHWHWW −= − TTd ; if 

mn <  then the desired input d can be determined using QR 
factorization as the minimum norm solution to the 
underdetermined linear system of equations db =+Wd  [11]. 
In both cases, in an MLP setting, given a desired signal ld  
for zl, we can determine dl-1 as the desired output for the 
preceding layer. output (after the nonlinearity) of the previous 
layer. The latter can then be backpropagated through the 
nonlinearity of layer l-1 as described in Lemma 1. 
 

III. OPTIMIZING THE WEIGHTS USING LEAST SQUARES 
 
 Once the desired output is backpropagated through the 
layers, the weights of each layer can be optimized 
(approximately) using linear least squares. The following 
problem treats the optimization of the weights taking the two 
lemmas of the previous section into account. 
 Problem 1. Given a linear layer z = Wx + b with 

 and , the training data in the form of 
pairs, i.e., 

nxmℜ∈W 1nxℜ∈b
Ns ,...,,(x ss 1) =d , and a matrix G as the 

weighting matrix for least squares. Define the error for every 
sample of the training data for each output of the network as 
 Nsnjjsjsjs ,...,1,,...,1 ==−= zdε  (3) 
where the outputs are evaluated using 
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with xis denoting the ith entry of the input sample xs. The 
optimal weights for this layer of the MLP under 
consideration, according to the arguments in Lemmas 1 and 2 
become the solution to the following minimization problem. 
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Fig. 1. MLP structure and variables 



 Solution. The minimization problem in (5) is quadratic in 
the weights, therefore, taking the gradient and equating to 
zero yields a system of linear equations. These equations are 
easily found to be ( , ) ml ,...,1= nk ,...,1=
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 The unknowns in this square system with nmn +⋅  
equations of (6) are the entries of W and b. This system of 
equations can easily be solved using a variety of 
computationally efficient approaches. The weight matrix G 
allows one to take into account the magnifying effect of the 
succeeding layers on the error of the specific layer. The 
derivatives of the nonlinearity, however, introduce the effect 
of the nonlinear layers on the propagation of the MSE 
through the layers.  
 

IV. OPTIMIZATION ALGORITHM FOR AN MLP 
 
The individual steps described in the preceding sections can 
be brought together to initialize the weights of an arbitrary 
size MLP in a very accurate fashion. In this section, we will 
consider the single hidden layer MLP case for simplicity. 
However, the described algorithm can easily be generalized 
to larger MLP topologies. 
 Initialization. Given training data in the form ( , 

. Initialize the weights W
), 2

ss dx

2
sd

Ns ,...,1=

11 WW =opt

1, W2, b1, b2 randomly. 
The superscripts ‘1’ and ‘2’ denote layer. Evaluate network 
outputs and store z  corresponding to x2211 ,,, ssss yzy

21 , WWb == optopt

s. Set 

Jopt to the MSE between  and . Set 

. 

2
sy

2 , 221, bbb =opt

 Step 1. Compute sf ss ∀= − ,)( 212 dd . 

 Step 2. Compute ( ) )( 2221221 bdWWWd −=
−

s
TT

s  (if 
overdetermined) or the minimum norm solution. 

 Step 3. Compute sf ss ∀= − ,)( 111 dd . 
 Step 4. Optimize W1 and b1 using (6). Since this is the 
first layer, the input x is the actual input of the MLP. The 
desired output is 1

sd  Optionally use G  or G22 WW T=  = I 
(experimentally the latter gives better results). 
 Step 5. Evaluate  using the new weights. 11 , ss yz
 Step 6. Optimize W2 and b2 using (6). Since this is the 
second layer, the input x is the output of the previous layer, 

. The desired output is 1
sy 2

sd . 

 Step 7. Evaluate  using the new weights. 22 , ss yz
 Step 8. Evaluate the new MSE and if J<Jopt, set 

. 222211111 ,,, bbWWbbWW ==== optoptoptopt

 Step 9. Go back to Step 2 or stop. 
The algorithm above backpropagates the desired signal 

to the first layer and then optimizes the weights of the layers 
sweeping them from the first to the last. Alternatively, first 
the last layer weights may be optimized, then the desired 
signal can be backpropagated through that layer using the 
optimized values of the weights, and so on. Thus, in this 
alternative algorithm, the layers are optimized sweeping them 
from the last to the first. Simulations with the latter yield 
results similar to those obtained by the presented algorithm. 
 The algorithm is iterated a number of times (two to five). 
The weight values that correspond to the smallest MSE error 
are assigned as initial conditions to a standard 
backpropagation or some other optimization algorithm. 
Although determining the optimal weights requires using this 
hybrid approach, since the least squares approach yields 
approximate optimization, for some applications, the least 
squares initialization solution for the weights might yield 
satisfactory results. The loss in MSE, in the latter situation, is 
compensated for by the fast determination of these 
suboptimal solutions. 
 

V. CASE STUDIES 
 
In this section, we present the results of Monte Carlo 
initialization and training experiments performed using the 
procedure described in the preceding sections. In these 
experiments, we used three data sets: the laser time-series 
[12], the Dow Jones Closing Index [12], and realistic engine 
manifold pressure-temperature dynamics data [13]. The first 
two data sets will be utilized in the single-step prediction 
framework, whereas, the last one will be considered as a 
nonlinear system identification problem. In this system 
identification problem, the input is the throttle angle that 
controls the amount of air flowing into the manifold. The 
system states are the internal manifold temperature and 
pressure.  

For these three data sets, we have employed the 
following networks respectively: TDNN(3,11,1) for the laser 
data, TDNN(5,7,1) for the Dow Jones data, and MLP(4,5,1) 
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 Figure 2. Histograms of final MSE values for the laser-series. 

for system identification. In this notation, the first value 
denotes the number of inputs, the second value denotes the 
number of processing elements (PE) in the hidden layer and 
the last value denotes the number of outputs of the MLP-type 
neural network. In the system identification example, the four 
inputs of the MLP are the current and the previous values of 
the input and the output (manifold pressure) of the system. In 
all examples, PEs have sigmoid nonlinearities (arctan). 

A total of five different approaches are taken in the 
training of all networks in all three examples. These are listed 
below and in the rest of the paper they will be addressed by 
the designated letter codes. 
• Backpropagation with random initial weights (BP). 
• Initialize second layer only using Steps 5-7 of the least 

squares algorithm (LS1). Iterate once. 
• Initialize both layers using the least squares algorithm in 

its entirety (LS2). Iterate three times. 
• Use LS1 to initialize second layer and run BP starting 

with random weights for first layer and LS1-initialized 
weights for second layer (LS1+BP). 

• Use LS2 to initialize all the weights and run BP starting 
with LS2-initialized weights (LS2+BP). 

For the three data sets, we have iterated BP for 1000, 2000, 
and 200 epochs, respectively. In contrast, for LS+BP 

approaches, the BP step was iterated 250, 500, and 50 epochs 
only. For all backpropagation updates, MATLAB®’s Neural 
Network Toolbox was utilized. The numbers of epochs 
mentioned above that are required for convergence was 
determined experimentally beforehand. 
 The results for laser time series prediction are 
summarized in the histograms given in Fig. 2. In the 100 
Monte Carlo experiments, LS1 and LS2 initialization 
schemes achieved low normalized MSE levels as seen in 
subfigures a1 and b1 (MSE is normalized by dividing with 
the power of the desired signal). Further training with 
backpropagation resulted in an improvement in MSE in the 
LS1+BP approach, but it did not change MSE much in 
LS2+BP (see a2 and b2). Training with BP, on the other 
hand, in general resulted in higher MSE values either due to 
slow convergence or local minima. Notice that the least 
squares algorithm has a much smaller computational 
complexity compared to backpropagation, yet it still achieves 
very small MSE levels. 
 The results of the Dow Jones series prediction are 
summarized in Fig. 3. Similarly, LS1 and LS2 initialization 
schemes achieved very small MSE levels and further training 
with backpropagation (LS+BP) did not improve MSE 
significantly. At the end of the preset number of iterations, 
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 Figure 3. Histograms of final MSE values for the Dow-Jones-series. 

the MSE levels of BP were much larger than those obtained 
with methods that used LS initialization. 
 We have seen the advantage of using LS1 and LS2 
initialization in MLP training in the first two examples. 
Performance-wise, we did not observe great differences 
between these two LS approaches, however. In this last 
example, we see a possible benefit of using LS2 over LS1. 
The results of the engine-dynamics-identification example are 
shown in Fig. 4. Notice that LS1 achieves an MSE around 
5x10-2 (subfigure a1), while LS2 yields an MSE on the order 
of 10-5 (subfigure b1). In both cases, further training using 
backpropagation does not improve MSE significantly. The 
BP approach was trapped in the same local minimum as LS1. 
 

VI. CONCLUSIONS 
 
The training speed and accuracy of neural networks can be 
improved drastically by proper initialization of the weights 
before a conventional nonlinear optimization tool is 
employed. In this paper, we have investigated a previously 
studied initialization scheme, namely least squares, in a 
mathematically rigorous manner. Previous work using this 
methodology often ignored the effect of the network 
nonlinearities on the propagation of the MSE through the 

layers of the network. Based on the theoretical results that are 
presented here, we have determined an algorithm to 
accurately initialize the weights of an MLP to a suboptimal 
solution, which yields a very small MSE. This algorithm is 
named as backpropagation of the desired response, due to the 
procedure actually prescribing how to propagate the desired 
output to the internal layers of the MLP. Then each layer of 
weights can be (almost) optimally trained by solving a linear 
system of equations, which correspond to finding the linear 
least squares solution for this layer of weights. 
 Although we have focused on the initialization aspect of 
this least squares algorithm, in many practical problems, such 
as real-time adaptive control using neural network models 
and controllers, the solutions offered by the proposed 
algorithm could be sufficiently accurate. This was 
demonstrated by a nonlinear system identification problem 
example, in which an MLP was trained to approximate a 
realistic engine manifold model accurately. 
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