
Accurate Initialization of Neural Network Weights
by Backpropagation of the Desired Response

Deniz Erdogmus1, Oscar Fontenla-Romero2, Jose C. Principe1,
Amparo Alonso-Betanzos2, Enrique Castillo3, Robert Jenssen1

1 Electrical Engineering Department, University of Florida, Gainesville, FL 32611, USA
2 Department of Computer Science, University of A Coruña, 15071 A Coruña, Spain

3 Department of Applied Mathematics, University of Cantabria, 39005, Santander, Spain

 Abstract – Proper initialization of neural networks is
critical for a successful training of its weights. Many methods
have been proposed to achieve this, including heuristic least
squares approaches. In this paper, inspired by these previous
attempts to train (or initialize) neural networks, we formulate a
mathematically sound algorithm based on backpropagating the
desired output through the layers of a multilayer perceptron.
The approach is accurate up to local first order approximations
of the nonlinearities. It is shown to provide successful weight
initialization for many data sets by Monte Carlo experiments.

I. INTRODUCTION

 Due to the nonlinear nature of neural networks, training
requires the use of numerical nonlinear optimization
techniques. Practically feasible training algorithms are
usually susceptible to local optima and might require
parameter fine-tuning. There are various approaches
undertaken to find the optimal weights of a neural network.
These include first- and second-order descent techniques,
which are mainly variants of gradient [1], natural gradient
[2], and Newton [3] optimization methods. Although higher
order search techniques could speed up convergence at the
cost of complexity, they are still vulnerable to local minima.
Global search procedures, such as random perturbations [4],
genetic algorithms [5], and simulated annealing [6] are not
feasible for practical applications due to time constraints.
Alternative approaches to help multilayer perceptrons (MLP)
learn faster and better include statistically proper weight
initialization [7,8], and approximate optimization through
heuristic least squares application [9, 10]. Although there are
many other references to list, we cannot go into such a
detailed review of the state-of-the-art in MLP initialization
and training, mainly due to the limited space available.
 As mentioned, approximate least squares solutions have
been previously proposed to initialize or train MLPs.
However, these methods mostly relied on minimizing the
mean square error (MSE) between the signal of an output
neuron before the output nonlinearity and a modified desired
output, which is exactly the actual desired output passed
through the inverse of the nonlinearity. This approach,
unfortunately does not consider the scaling effects of the

nonlinearity slope on the propagation of the MSE through the
nonlinearity. Nevertheless, they provided the invaluable
inspiration for the work presented in this paper, which takes
into account the effect of weights and nonlinearities on the
propagation of MSE through the network. Specifically, we
present an algorithm, which we named backpropagation of
the desired response that can initialize the weights of an MLP
to a point with very small MSE. This algorithm is an
approximation of the nonlinear least squares problem with
linear least squares and is accurate up to the first-order term
in the Taylor series expansion. We considered including
higher order terms in the expansion, but then the utility of
linear least squares method is not possible.

In this paper, we first present two theoretical results that
form the basis for the backpropagation of the desired
response algorithm. Then, we provide the algorithm and
demonstrate its performance with Monte Carlo experiments.

II. THEORETICAL RESULTS

 Notice that in the L-layer MLP architecture shown in
Fig. 1 there are two parts that need to be investigated to
achieve successful backpropagation of the desired output
through the layers: linear weight matrix and neuron
nonlinearity. For our algorithm, we require this nonlinearity
to be invertible at every point in its range. We use the
following notation to designate signals: the output of the lth
layer is zl and yl before and after the nonlinearity. The weight
matrix and the bias vector of this layer are Wl and bl,
respectively. The input vector is x. The number of neurons in
a layer is denoted by nl and n0 is the number of inputs. The
training set consisting of N input-desired pairs is given in the
form . The backpropagated desired output for the l),(L

tt dx th

layer is denoted by dl at the output of the nonlinearity and ld
at the input of the nonlinearity.

A. Backpropagating Through a Nonlinearity

Consider a single-layer nonlinear network for which the
output is obtained from z = Wx + b and y = f(z), where f(.) is a
vector-valued nonlinear function, invertible on its range.
Assume that the objective is to minimize a weighted MSE
cost function defined on the error between y and d. Let H be This work is partially supported by NSF grant ECS-9900394 and the Xunta

de Galicia project PGIDT-01PXI10503PR.

the weighting matrix. Then Lemma 1 describes the
backpropagation of d through f(.).
 Lemma 1. Let nℜ∈dz,y,

1nxℜ∈b
nℜ′− :1 f,ff,

d, be the desired and actual

outputs, and be the weight matrix and
the bias vector, and be the nonlinearity,
its inverse and its derivative. Then the following equivalence
between two optimization problems is accurate up to the first
order of Taylor series expansion.

nxmℜ∈W
nℜ→

)]()[(min)]()[(min ε)d(fHε)d(fydHyd
bW,bW,

.*.*EE TT ′′≡−− (1)

where ‘.*’ denotes element-wise vector product,)(1 dfd −= ,
and zd −=ε .
Proof. Recall that y=f(z) and)(dfd = . Substituting the first-
order expansion εdfdfεdfz *).()()()(′−≈−=f , we obtain
the result. Due to space restrictions, we do not present this
proof in detail. �

According to this lemma, when backpropagating the
desired response through a nonlinearity, the sensitivity of the
output error with respect to the slope of the nonlinearity at the
operating point should be taken into consideration. Simply
minimizing the MSE between the modified desired d and z
is not equivalent to minimizing the MSE between the d and y.
Note that if)var(d is also small, then since the operating
point of the nonlinearity is almost fixed for all samples, the

 terms become redundant. Previous applications of least
squares to MLPs did not consider the variance of d and the
correction scale factor based on the derivative of the
nonlinearity at the operating point.

f ′

B. Backpropagating Through Linear Weight Layer

 Consider a linear network given by z = Wx + b and let d
be the desired output. In this scheme, we assume that the
weights W and b are fixed already. The objective is to find
the best input vector x that minimizes the output MSE. In the
MLP context, the input vector will correspond to the output
of the nonlinearity of the preceding layer. The result
regarding the optimization of x in this situation is
summarized in the following lemma.

 Lemma 2. Let nm ℜ∈ℜ∈ z,dx ,d, be the desired signals

and the corresponding output signals, and
 be fixed weights. Then the following equivalence

between the optimization problems holds.

nxmℜ∈W
1nxℜ∈b

)]()[(min

)]()[(min

1

1

xdHWWxd

zdHzd

x

x

−−≡

−−

ℜ⊂∈

ℜ⊂∈
TT

D

T

D

E

E

mx

mx
 (2)

where D is the set of allowed input values. In the MLP
context, this set is determined by the output range of the
nonlinearities in the network.
Proof. The proof of this result is very similar to the derivation
of the least squares solution for a vector from an
overdetermined (or underdetermined) system of linear
equations. Due to space restrictions, we do not present this
proof in detail. �
 In the application of this lemma, two situations may
occur: if , then mn ≥)()(1 bdHWHWW −= − TTd ; if

mn < then the desired input d can be determined using QR
factorization as the minimum norm solution to the
underdetermined linear system of equations db =+Wd [11].
In both cases, in an MLP setting, given a desired signal ld
for zl, we can determine dl-1 as the desired output for the
preceding layer. output (after the nonlinearity) of the previous
layer. The latter can then be backpropagated through the
nonlinearity of layer l-1 as described in Lemma 1.

III. OPTIMIZING THE WEIGHTS USING LEAST SQUARES

 Once the desired output is backpropagated through the
layers, the weights of each layer can be optimized
(approximately) using linear least squares. The following
problem treats the optimization of the weights taking the two
lemmas of the previous section into account.
 Problem 1. Given a linear layer z = Wx + b with

 and , the training data in the form of
pairs, i.e.,

nxmℜ∈W 1nxℜ∈b
Ns ,...,,(x ss 1) =d , and a matrix G as the

weighting matrix for least squares. Define the error for every
sample of the training data for each output of the network as
 Nsnjjsjsjs ,...,1,,...,1 ==−= zdε (3)
where the outputs are evaluated using

 (4) ∑
=

==+=
N

i
isjijjs Nsnj

1
,...,1,,...,1,xWbz

with xis denoting the ith entry of the input sample xs. The
optimal weights for this layer of the MLP under
consideration, according to the arguments in Lemmas 1 and 2
become the solution to the following minimization problem.

 ∑∑∑
= = =

′′=
N

s

n

i

n

j
jsisjsisij ff

N
J

1 1 1
)()(1min εεddG

W,b
 (5)

LL bW ,
1

1

−Ly1z11, bW 1y Lz Lyf

…

1

x
f f

ff

f

Fig. 1. MLP structure and variables

 Solution. The minimization problem in (5) is quadratic in
the weights, therefore, taking the gradient and equating to
zero yields a system of linear equations. These equations are
easily found to be (,) ml ,...,1= nk ,...,1=

∑ ∑

∑∑ ∑

∑ ∑

∑ ∑

∑∑ ∑

∑ ∑

= =

= = =

= =

= =

= = =

= =












′′=












′′+












′′












′′=












′′+












′′

n

i

N

s
isisksik

m

p

n

i

N

s
psisksikip

n

i

N

s
isksiki

n

i

N

s
islsisksik

m

p

n

i

N

s
pslsisksikip

n

i

N

s
lsisksiki

ddfdf

xdfdfw

dfdfb

dxdfdf

xxdfdfw

xdfdfb

1 1

1 1 1

1 1

1 1

1 1 1

1 1

)()(

)()(

)()(

)()(

)()(

)()(

γ

γ

γ

γ

γ

γ

 (6)

 The unknowns in this square system with nmn +⋅
equations of (6) are the entries of W and b. This system of
equations can easily be solved using a variety of
computationally efficient approaches. The weight matrix G
allows one to take into account the magnifying effect of the
succeeding layers on the error of the specific layer. The
derivatives of the nonlinearity, however, introduce the effect
of the nonlinear layers on the propagation of the MSE
through the layers.

IV. OPTIMIZATION ALGORITHM FOR AN MLP

The individual steps described in the preceding sections can
be brought together to initialize the weights of an arbitrary
size MLP in a very accurate fashion. In this section, we will
consider the single hidden layer MLP case for simplicity.
However, the described algorithm can easily be generalized
to larger MLP topologies.
 Initialization. Given training data in the form (,

. Initialize the weights W
), 2

ss dx

2
sd

Ns ,...,1=

11 WW =opt

1, W2, b1, b2 randomly.
The superscripts ‘1’ and ‘2’ denote layer. Evaluate network
outputs and store z corresponding to x2211 ,,, ssss yzy

21 , WWb == optopt

s. Set

Jopt to the MSE between and . Set

.

2
sy

2 , 221, bbb =opt

 Step 1. Compute sf ss ∀= − ,)(212 dd .

 Step 2. Compute ())(2221221 bdWWWd −=
−

s
TT

s (if
overdetermined) or the minimum norm solution.

 Step 3. Compute sf ss ∀= − ,)(111 dd .
 Step 4. Optimize W1 and b1 using (6). Since this is the
first layer, the input x is the actual input of the MLP. The
desired output is 1

sd Optionally use G or G22 WW T= = I
(experimentally the latter gives better results).
 Step 5. Evaluate using the new weights. 11 , ss yz
 Step 6. Optimize W2 and b2 using (6). Since this is the
second layer, the input x is the output of the previous layer,

. The desired output is 1
sy 2

sd .

 Step 7. Evaluate using the new weights. 22 , ss yz
 Step 8. Evaluate the new MSE and if J<Jopt, set

. 222211111 ,,, bbWWbbWW ==== optoptoptopt

 Step 9. Go back to Step 2 or stop.
The algorithm above backpropagates the desired signal

to the first layer and then optimizes the weights of the layers
sweeping them from the first to the last. Alternatively, first
the last layer weights may be optimized, then the desired
signal can be backpropagated through that layer using the
optimized values of the weights, and so on. Thus, in this
alternative algorithm, the layers are optimized sweeping them
from the last to the first. Simulations with the latter yield
results similar to those obtained by the presented algorithm.
 The algorithm is iterated a number of times (two to five).
The weight values that correspond to the smallest MSE error
are assigned as initial conditions to a standard
backpropagation or some other optimization algorithm.
Although determining the optimal weights requires using this
hybrid approach, since the least squares approach yields
approximate optimization, for some applications, the least
squares initialization solution for the weights might yield
satisfactory results. The loss in MSE, in the latter situation, is
compensated for by the fast determination of these
suboptimal solutions.

V. CASE STUDIES

In this section, we present the results of Monte Carlo
initialization and training experiments performed using the
procedure described in the preceding sections. In these
experiments, we used three data sets: the laser time-series
[12], the Dow Jones Closing Index [12], and realistic engine
manifold pressure-temperature dynamics data [13]. The first
two data sets will be utilized in the single-step prediction
framework, whereas, the last one will be considered as a
nonlinear system identification problem. In this system
identification problem, the input is the throttle angle that
controls the amount of air flowing into the manifold. The
system states are the internal manifold temperature and
pressure.

For these three data sets, we have employed the
following networks respectively: TDNN(3,11,1) for the laser
data, TDNN(5,7,1) for the Dow Jones data, and MLP(4,5,1)

0 0.1 0.2 0.3 0.4
0

10

20

30

40

Normalized Final MSE for BP (random initialization)

P
D

F
(B

P
)

0 0.02 0.04 0.06 0.08 0.1 0.12
0

5

10

15

20

Normalized Final MSE after LS initialization

P
D

F
(L

S
)

Two-layer initialization

0 0.02 0.04 0.06 0.08 0.1 0.12
0

5

10

15

20

Normalized Final MSE for BP (LS initialization)

P
D

F
(L

S
+B

P
)

0 200 400 600 800 1000
0

100

200

300

Time

La
se

r T
im

e-
S

er
ie

s

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

10

20

30

40

Normalized Final MSE after LS initialization

P
D

F
(L

S
)

One-layer initialization

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

10

20

30

40

Normalized Final MSE for BP (LS initialization)

P
D

F
(L

S
+B

P
)

 (a) (b)
 Figure 2. Histograms of final MSE values for the laser-series.

for system identification. In this notation, the first value
denotes the number of inputs, the second value denotes the
number of processing elements (PE) in the hidden layer and
the last value denotes the number of outputs of the MLP-type
neural network. In the system identification example, the four
inputs of the MLP are the current and the previous values of
the input and the output (manifold pressure) of the system. In
all examples, PEs have sigmoid nonlinearities (arctan).

A total of five different approaches are taken in the
training of all networks in all three examples. These are listed
below and in the rest of the paper they will be addressed by
the designated letter codes.
• Backpropagation with random initial weights (BP).
• Initialize second layer only using Steps 5-7 of the least

squares algorithm (LS1). Iterate once.
• Initialize both layers using the least squares algorithm in

its entirety (LS2). Iterate three times.
• Use LS1 to initialize second layer and run BP starting

with random weights for first layer and LS1-initialized
weights for second layer (LS1+BP).

• Use LS2 to initialize all the weights and run BP starting
with LS2-initialized weights (LS2+BP).

For the three data sets, we have iterated BP for 1000, 2000,
and 200 epochs, respectively. In contrast, for LS+BP

approaches, the BP step was iterated 250, 500, and 50 epochs
only. For all backpropagation updates, MATLAB®’s Neural
Network Toolbox was utilized. The numbers of epochs
mentioned above that are required for convergence was
determined experimentally beforehand.
 The results for laser time series prediction are
summarized in the histograms given in Fig. 2. In the 100
Monte Carlo experiments, LS1 and LS2 initialization
schemes achieved low normalized MSE levels as seen in
subfigures a1 and b1 (MSE is normalized by dividing with
the power of the desired signal). Further training with
backpropagation resulted in an improvement in MSE in the
LS1+BP approach, but it did not change MSE much in
LS2+BP (see a2 and b2). Training with BP, on the other
hand, in general resulted in higher MSE values either due to
slow convergence or local minima. Notice that the least
squares algorithm has a much smaller computational
complexity compared to backpropagation, yet it still achieves
very small MSE levels.
 The results of the Dow Jones series prediction are
summarized in Fig. 3. Similarly, LS1 and LS2 initialization
schemes achieved very small MSE levels and further training
with backpropagation (LS+BP) did not improve MSE
significantly. At the end of the preset number of iterations,

1 1.2 1.4 1.6

x 10-4

0

5

10

15

Normalized Final MSE for BP (random initialization)

P
D

F
(B

P
)

0.8 1 1.2 1.4 1.6 1.8

x 10-4

0

20

40

60

80

100

Normalized Final MSE after LS initialization

P
D

F
(L

S
)

Two-layer initialization

7.1 7.2 7.3 7.4 7.5 7.6 7.7

x 10-5

0

10

20

30

40

50

Normalized Final MSE for BP (LS initialization)

P
D

F
(L

S
+B

P
)

0 200 400 600 800 1000
2

2.5

3

3.5

4

Time

D
ow

 J
on

es
 In

de
x

(x
10

00
)

7.2 7.3 7.4 7.5 7.6

x 10-5

0

20

40

60

80

100

Normalized Final MSE after LS initialization

P
D

F
(L

S
)

One-layer initialization

7.2 7.3 7.4 7.5 7.6

x 10-5

0

20

40

60

80

100

Normalized Final MSE for BP (LS initialization)

P
D

F
(L

S
+B

P
)

 (a) (b)
 Figure 3. Histograms of final MSE values for the Dow-Jones-series.

the MSE levels of BP were much larger than those obtained
with methods that used LS initialization.
 We have seen the advantage of using LS1 and LS2
initialization in MLP training in the first two examples.
Performance-wise, we did not observe great differences
between these two LS approaches, however. In this last
example, we see a possible benefit of using LS2 over LS1.
The results of the engine-dynamics-identification example are
shown in Fig. 4. Notice that LS1 achieves an MSE around
5x10-2 (subfigure a1), while LS2 yields an MSE on the order
of 10-5 (subfigure b1). In both cases, further training using
backpropagation does not improve MSE significantly. The
BP approach was trapped in the same local minimum as LS1.

VI. CONCLUSIONS

The training speed and accuracy of neural networks can be
improved drastically by proper initialization of the weights
before a conventional nonlinear optimization tool is
employed. In this paper, we have investigated a previously
studied initialization scheme, namely least squares, in a
mathematically rigorous manner. Previous work using this
methodology often ignored the effect of the network
nonlinearities on the propagation of the MSE through the

layers of the network. Based on the theoretical results that are
presented here, we have determined an algorithm to
accurately initialize the weights of an MLP to a suboptimal
solution, which yields a very small MSE. This algorithm is
named as backpropagation of the desired response, due to the
procedure actually prescribing how to propagate the desired
output to the internal layers of the MLP. Then each layer of
weights can be (almost) optimally trained by solving a linear
system of equations, which correspond to finding the linear
least squares solution for this layer of weights.
 Although we have focused on the initialization aspect of
this least squares algorithm, in many practical problems, such
as real-time adaptive control using neural network models
and controllers, the solutions offered by the proposed
algorithm could be sufficiently accurate. This was
demonstrated by a nonlinear system identification problem
example, in which an MLP was trained to approximate a
realistic engine manifold model accurately.

REFERENCES

[1] D.E. Rumelhart, G.E. Hinton, R.J. Williams,

“Learning Representations of Back-Propagation
Errors,” Nature, vol. 323, pp.533-536, 1986.

0.0516 0.0518 0.052 0.0522 0.0524 0.0526 0.0528
0

20

40

60

Normalized Final MSE for BP (random initialization)

P
D

F
(B

P
)

0.8 1 1.2 1.4 1.6 1.8 2

x 10-5

0

5

10

15

20

25

Normalized Final MSE after LS initialization

P
D

F
(L

S
)

Two-layer initialization

0.8 1 1.2 1.4 1.6 1.8 2

x 10-5

0

5

10

15

20

25

Normalized Final MSE for BP (LS initialization)

P
D

F
(L

S
+B

P
)

0 200 400 600 800 1000
0

2

4

6

8
x 104

Time

E
ng

in
e

P
re

ss
ur

e

0.051 0.0515 0.052 0.0525 0.053 0.0535 0.054
0

20

40

60

80

100

Normalized Final MSE after LS initialization

P
D

F
(L

S
)

One-layer initialization

0.051 0.0515 0.052 0.0525 0.053 0.0535 0.054
0

20

40

60

80

100

Normalized Final MSE for BP (LS initialization)

P
D

F
(L

S
+B

P
)

 (a) (b)
 Figure 4. Histograms of final MSE values for engine-dynamics-identification.

[2] S. Amari, “Natural Gradient Works Efficiently in
Learning,” Neural Computation, vol.10, pp.251-276,
1998.

[3] C.M. Bishop, “Exact Calculation of the Hessian
Matrix for the Multilayer Perceptron,” Neural
Computation, vol. 4, no. 4, pp.494-501, 1992.

[4] M.A. Styblinski, T.S. Tang, “Experiments in
Nonconvex Optimization: Stochastic Approximation
with function Smoothing and Simulated Annealing,”
Neural Networks, vol. 3, pp.467-483, 1990.

[5] S. Bengio, Y. Bengio, J. Cloutier, “Use of Genetic
Programming for the Search of a New Learning Rule
for Neural Networks,” Proceedings of the First IEEE
World Congress on Computational Intelligence and
Evolutionary Computation, pp.324-327, 1994.

[6] V.W. Porto, D.B. Fogel, “Alternative Neural Network
Training Methods [Active Sonar Processing],” IEEE
Expert, vol. 10, no. 3, pp. 16-22, 1995.

[7] D. Nguyen, B. Widrow, “Improving the Learning
Speed of 2-layer Neural Networks by Choosing Initial
Values of the Adaptive Weights,” Proceedings of

International Joint Conference on Neural Networks,
vol. 3, pp.21-26, 1990.

[8] G.P. Drago, S. Ridella, “Statistically Controlled
Activation Weight Initialization (SCAWI),” IEEE
Transactions on Neural Networks, vol. 3, pp. 899-905,
1992.

[9] Y.F. Yam, T.W.S. Chow, “A New Method in
Determining the Initial Weights of Feedforward
Neural Networks,” Neurocomputing, vol. 16, no. 1,
pp.23-32, 1997.

[10] F. Biegler-Konig, F. Barnmann, “A Learning
Algorithm for Multilayered Neural Networks Based on
Linear Least Squares Problems,” Neural Networks,
vol. 6, pp. 127-131, 1993.

[11] G. Golub, C.V. Loan, Matrix Computation, John
Hopkins University Press, Baltimore, MD, 1993.

[12] http://www.kernel-machines.org/
[13] J.D. Powell, N.P. Fekete, C-F. Chang, “Observer-

Based Air-Fuel Ratio Control,” IEEE Control Systems
Magazine, vol. 18, no. 5, pp. 72-83, Oct. 1998.

	A.Backpropagating Through a Nonlinearity
	B.Backpropagating Through Linear Weight Layer

