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Abstract- A novel algorithm named Spike-LMS is described 

that adapts the synaptic weights of an artificial spiking neuron 
to produce a desired response. The derivation of Spike-LMS 
follows from the derivation of the Least-Mean Squares (LMS) 
algorithm used in adaptive filter theory. Spike-LMS works 
directly in the domain of spike trains, and therefore makes no 
assumptions about any particular neural encoding method. This 
algorithm is able to identify the synaptic weights of a spiking 
neuron given the pre-synaptic and post-synaptic spike trains.1  

INTRODUCTION 
Spiking neural networks have received a good deal of 

attention in the past few years. A key difficultly in applying 
them to engineering applications is that application data is not 
often described by spike trains. Many methods of encoding 
continuous-valued, discrete-time data into spike trains have 
been proposed, usually taking the form of rate encoding or 
temporal encoding. These two encoding methods have 
problems. Rate encoding regards the individual arrival times 
as unimportant, and thus underutilizes the information 
capacity of the spike train. Using only rates is known to be 
insufficient for many time-sensitive processing tasks, unless 
the output of a large number of neurons is considered in 
aggregation (population encoding). Alternatively, temporal 
encoding methods invariably require some form of 
synchronization, and the resulting firing patterns are not 
consistent with many biological firing patterns [1]. 

When using any formally described encoding method, it is 
possible to develop supervised learning rules for training a 
spiking neuron by finding the local minima of a cost function. 
The cost function should be defined in terms of the error of 
the pre-encoded data, and the local minima can be found 
using gradient descent. However, this method will only 
ensure that the pre-encoded error will be minimized. If a rate 
code is used, there is no guarantee that the output spike train 
will match the desired spike train; only their rates will match. 
If instead a temporal code is used then a synchronization 
signal must be incorporated into the model to provide the 
relative timing information [1]. An example of supervised 
learning with synchronized inputs is described in [2]. 

The Spike-LMS learning method proposed in this paper 
does not suffer from these ailments. The algorithm assumes 
no form of encoding and thus works directly with the spike 
trains. It is difficult to define a performance criterion in terms 
of only spike trains (an attempt is made in the derivation 
described here, but it is not a true performance criterion). 

Such a performance measure is necessary in order to use 
gradient techniques typically used in artificial neural network 
models. Instead of attempting to optimize some measure 
performance, we formulate the supervised learning problem 
as a system identification problem. We then describe an 
algorithm that adapts a neural model to produce the same 
output as some unknown neural model. If we are able to 
identify the parameters of the unknown system accurately, 
then output of the two systems should be nearly identical.  

                                                 
This work was partially supported by NSF EIA 0135946. 
 

To perform system identification, we create an adaptive 
model identical to the given model as shown in Fig. 1. We 
then adapt the weights so that the outputs of the two models 
converge. In this figure, the variables describing the unknown 
fixed-weight neuron are identified by a superscript (*). All 
inputs and the output are spike trains. 
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Fig. 1.  Identification of the synaptic weights of a 
spiking neuron: x1 – x3 are the input spike trains, y 
is the adaptive output spike train, y* is the desired 

spike train, w1 – w3 are the adaptive synaptic 
weights and w1

* – w3
* are the desired synaptic 

weights. 

SPIKE RESPONSE MODEL OF A NEURON 

We are using the Spike Response Model (SRM) of a 
spiking neuron. This model is shown to be a generalization of 
the Integrate-and-Fire model used throughout the literature. 
This section is provided to give the reader a basic 
understanding of the model, and to introduce quantities used 



in subsequent sections in this paper. A more complete treatise 
of the SRM can be found in [3]. 

In the SRM, the neuron receives input spike trains of unit 
Dirac impulses from a number of other neurons and emits a 
similar output spike train. We define the set of firing times of 
the ith input as Xi, and the set of firing times of the output as 
Y, where  and n is the number of inputs.  ( 1,..., nY f X X= )
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)t

The neurons are connected to each other by synapses. The 
synapses behave as linear filters of the input spike with an 
impulse response given by wiε(t), where wi is the connection 
strength. For a realistic neuron, ε(t) must be causal and must 
approach 0 at t = ∞. The responses of all the synapses are 
added together to form the cell potential v(t). Thus, 
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When the cell potential reaches a threshold γ(t) at time t (y), 

the neuron fires and the threshold is increased by η(t – t (y)). 
For a realistic neuron, η(t) must be causal and must approach 
0 at t = ∞. Using a time-varying threshold to describe the 
SRM is referred to as the dynamic threshold model [3]. In 
general, the threshold is given by 
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where γ0 is the initial threshold. A typical example how the 
cell potential changes through time is shown in Fig. 2. 
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Fig 2. Plot of the cell potential (solid line) and the 

dynamic threshold (dashed line on top) versus time for 
the SRM model. Each “hump” is the additive effect of 
the synaptic input spike response on the cell potential. 

SPIKE-LMS ALGORITHM 

Following the derivation shown in [4] for the LMS 
algorithm, we define the cost function as the difference 
between the desired response and the output of the system. 
When the system output is a spike train, this cost function has 
many undesirable properties. For example, if we shift the 
ideal output spike train y(t) = d(t) by any ε ≠ 0 to y(t – ε) = 

d(t), then the cost function jumps from zero to the maximum 
possible cost such that the time average of the two signals is 
the same. If the desired signal is non-periodic, then in effect 
there are only two values for the time average of the cost: 0 
(when y(t) = d(t)) and twice the time average of the desired 
response squared. This cost function is not desirable for 
gradient descent because the gradient is zero everywhere 
except at point discontinuities where it is infinite. 
Nevertheless, we can use this definition to motivate an 
understanding of the Spike-LMS algorithm. Let the cost be 

 ( 2)J d y= − . (3) 
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and from definition of v, we have 
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The other partial derivative in (2), y v∂∂ , is not easily 
defined because of the threshold firing behavior of y. 
However, we know that that the true expression of iJ w∂ ∂ is 
not useful, and the other terms in this expression are rather 
simple, therefore y v∂ ∂  must be the cause of the undesirable 
properties of iJ w∂ ∂ . Increasing v will generally shorten the 
time of the next firing of y, in effect “increasing” y, thus 

y v∂ ∂  should be positive. We will replace y v∂ ∂  with 1—
our only justification being that the resulting algorithm works 
well. With this substitution, the gradient descent expression 
becomes: 
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The desired and output spike trains, d and y are trains of 

impulses, so iJ w∂ ∂ can be expressed as: 
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Finally, if we adapt the weights according to the steepest 
descent rule, we get the following algorithm we call the 
Spike-LMS algorithm (ξ is the step-size parameter): 

 
1. When the output y fires update wi so that 
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2. When the desired response d fires, update wi so that 
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Note that if both d and y fire at the same time, the two 
updates cancel each other, which is what we expect. 

Alternatively, the Spike-LMS algorithm can be thought out 
as a combination of Hebbian and anti-Hebbian learning. 
Hebbian learning is used between the pre-synaptic input spike 
trains x1…xN, and the desired spike train d. Anti-Hebbian 
learning is used between x1…xN, and the output spike train y. 
This is the same concept used in Widrow’s LMS algorithm 
for linear adaptive systems [4]. In that algorithm, the weight 
update for each input is proportional to the product of the 
input and the error between the output and desired response: 
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The first term is a Hebbian-like update between the input 
and the desired response and the second term is an anti-
Hebbian update between the input and the output [5]. 

SIMULATION RESULTS 
In the preceding section, we described an algorithm for 

updating the synaptic weights of a spiking neuron to perform 
supervised learning and system identification. In this section, 
we will show some simulations. To demonstrate the system, 
we use generated Poisson spike trains with a constant rate. 
Past work in neuroscience shows that spike trains produced 
by the brain can be roughly modeled as being Poisson 
distributed point processes [6].  

To simulate the SRM neuron we chose ε(t) to be the 
response of a linear second-order filter with a double real 
pole, i.e. 
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We chose η(t) to be a decaying exponential with the same 
time constant as ε(t), i.e. 
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and we chose γ0 = 1.  
These choices make the SRM behave equivalently to the 

second-order Integrate-and-Fire model. Additionally, these 
choices were easily implemented using an event driven 
simulator to model them. Using a discrete-time simulation 
would require much more computation and/or introduce 
quantization artifacts, depending on the resolution of the time 
slicing. 

The simulated neural architecture was setup as shown in 
Fig. 1 with two neurons identical in everything except the 
synaptic weights. The weights for the neuron that produces 
the desired response were fixed, and the weights for the 
neuron that produces the output were varied. The inputs were 
applied to both spike trains simultaneously. After each spike 
produced by the desired neuron, the weights are increased 
according to (9), and after each spike produced by the output 
neuron, the weights are decreased according to (8). Gaussian 
jitter (σ = 1ms) was added to the desired spike train to test the 
system for noise robustness. 

In the experiment shown in Figs. 3-5, we examine the 
performance of the Spike-LMS algorithm when used with 
Poisson input spike trains. The Poisson spike trains emitted 
spikes at an average rate of 100 Hz, 50 Hz and 25 Hz for 
inputs 1, 2 and 3, respectively. The weights of the synaptic 
connections for the neuron producing the desired response 
were fixed at 0.4, 0.2 and 0.5. Figs. 3 and 4 show the weight 
tracks of the LMS algorithm as learning takes place. The 
weight tracks take some time to converge, especially for the 
second input, which has the slowest firing rate.  

The filter parameter τ is larger in Fig. 4 that in Fig. 3, 
which causes the convergence rate to be slower. In fact, the 
weight convergence time will be large if τ is too large or too 
small. As τ gets larger, the output fires more often because 
the input spikes have a better chance of adding up above the 
threshold before the spike response decays, and the rate of 
weight updates will increase proportionally. If τ is too small, 
then very few output spikes will be produced, thus increasing 
the convergence time. The reason for this is that for each 
output spike, there are more contributions from a larger 
number of input spikes. Thus, it is likely that an input spike 
regardless of synaptic weight will be adjusted up and down 
by the algorithm on desired spikes and output spikes, 
respectively. These noisy take longer to converge, even 
though there are more of them. On the other hand, if τ is 
much smaller than the spike rate, only spikes that occur very 
close in time will increase the cell potential past the 
threshold, and weights will take a long time to converge. 

Fig. 5 shows the last twelve output spikes and the 
associated desired response for this experiment with τ = 
10ms. This shows that once the weights are trained the output 
matches the desired response very closely.  

 
 

 
Fig 3. Weight tracks of the Spike LMS algorithm 

with τ = 10ms. Average spike rates are 100 Hz, 25 Hz 
and 50 Hz for inputs 1, 2 and 3, respectively. The 

step size η is 0.002. 



 
Fig 4. Weight tracks of the Spike LMS algorithm 

with τ = 50ms. Average spike rates are 100 Hz, 25 Hz 
and 50 Hz for inputs 1, 2 and 3, respectively. The 

step size ξ is 0.002. 

 

CONCLUSION 

We have shown that the Spike-LMS algorithm is able to 
identify the synaptic weights of an SRM neuron given its 
inputs and outputs. This weight adaptation mechanism is not 
dependent on any neural encoding scheme applied to the 
spike trains, and assumes very little about the nature of the 
spike trains themselves, in contrast to previously proposed 
supervised learning methods. The algorithm presented here is 
simple, yet robust. Adaptive step-size techniques used in 
many other artificial neural network algorithms can also be 
easily applied to the Spike-LMS to improve convergence and 
the misadjustment of the adapted weight values. 

We know from biology and from the power of human 
intelligence that spike trains are an extremely powerful and 
robust method of representing real-world data. Unfortunately, 
we still do not understand how this data is encoded into spike 
trains; it is likely that the number of encoding methods used 
in biology is large and each method is tailored to a specific 
adaptation. The power of the algorithm presented here is that 
it does not require knowledge of the encoding method, and 
should work wherever the SRM model is applicable. 

The utility of this algorithm probably will not lie with its 
ability to learn static data by converting it into spike trains 
using some encoding scheme, although this is certainly 
possible. Rather it can be used as a tool to explore the 
possibilities of learning when using spiking neurons.  

 
Fig. 5. Plot of the desired spike train (d) and the 

output spike train (y) after weight convergence of 
the last 12 spikes. Notice that the spike trains are 

almost identical. Here, τ = 10ms. The average 
absolute error between these sets of spikes is 

0.4ms. 

 
A specific application of this idea is in modeling small 

biological neural networks. If the spike trains of the 
biological network can be probed, this algorithm can be used 
to model biology by finding the synaptic weights. The 
weights can then be used in an SRM artificial neural network 
that mimics biology. 
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