
Supervised Synaptic Weight Adaptation for a Spiking Neuron

Bryan A. Davis, Deniz Erdogmus, Yadunandana N. Rao, Jose C. Principe
Electrical Engineering Department, University of Florida, Gainesville, FL 32611, USA

Abstract- A novel algorithm named Spike-LMS is described

that adapts the synaptic weights of an artificial spiking neuron
to produce a desired response. The derivation of Spike-LMS
follows from the derivation of the Least-Mean Squares (LMS)
algorithm used in adaptive filter theory. Spike-LMS works
directly in the domain of spike trains, and therefore makes no
assumptions about any particular neural encoding method. This
algorithm is able to identify the synaptic weights of a spiking
neuron given the pre-synaptic and post-synaptic spike trains.1

INTRODUCTION
Spiking neural networks have received a good deal of

attention in the past few years. A key difficultly in applying
them to engineering applications is that application data is not
often described by spike trains. Many methods of encoding
continuous-valued, discrete-time data into spike trains have
been proposed, usually taking the form of rate encoding or
temporal encoding. These two encoding methods have
problems. Rate encoding regards the individual arrival times
as unimportant, and thus underutilizes the information
capacity of the spike train. Using only rates is known to be
insufficient for many time-sensitive processing tasks, unless
the output of a large number of neurons is considered in
aggregation (population encoding). Alternatively, temporal
encoding methods invariably require some form of
synchronization, and the resulting firing patterns are not
consistent with many biological firing patterns [1].

When using any formally described encoding method, it is
possible to develop supervised learning rules for training a
spiking neuron by finding the local minima of a cost function.
The cost function should be defined in terms of the error of
the pre-encoded data, and the local minima can be found
using gradient descent. However, this method will only
ensure that the pre-encoded error will be minimized. If a rate
code is used, there is no guarantee that the output spike train
will match the desired spike train; only their rates will match.
If instead a temporal code is used then a synchronization
signal must be incorporated into the model to provide the
relative timing information [1]. An example of supervised
learning with synchronized inputs is described in [2].

The Spike-LMS learning method proposed in this paper
does not suffer from these ailments. The algorithm assumes
no form of encoding and thus works directly with the spike
trains. It is difficult to define a performance criterion in terms
of only spike trains (an attempt is made in the derivation
described here, but it is not a true performance criterion).

Such a performance measure is necessary in order to use
gradient techniques typically used in artificial neural network
models. Instead of attempting to optimize some measure
performance, we formulate the supervised learning problem
as a system identification problem. We then describe an
algorithm that adapts a neural model to produce the same
output as some unknown neural model. If we are able to
identify the parameters of the unknown system accurately,
then output of the two systems should be nearly identical.

This work was partially supported by NSF EIA 0135946.

To perform system identification, we create an adaptive
model identical to the given model as shown in Fig. 1. We
then adapt the weights so that the outputs of the two models
converge. In this figure, the variables describing the unknown
fixed-weight neuron are identified by a superscript (*). All
inputs and the output are spike trains.

Spiking
Neuron

Spiking
Neuron

Spike-LMS

w*1

w*2

w*3

w1

w2

w3

y*

y

x 1

x 2

x 3

Spiking
Neuron

Fig. 1. Identification of the synaptic weights of a
spiking neuron: x1 – x3 are the input spike trains, y
is the adaptive output spike train, y* is the desired

spike train, w1 – w3 are the adaptive synaptic
weights and w1

* – w3
* are the desired synaptic

weights.

SPIKE RESPONSE MODEL OF A NEURON

We are using the Spike Response Model (SRM) of a
spiking neuron. This model is shown to be a generalization of
the Integrate-and-Fire model used throughout the literature.
This section is provided to give the reader a basic
understanding of the model, and to introduce quantities used

in subsequent sections in this paper. A more complete treatise
of the SRM can be found in [3].

In the SRM, the neuron receives input spike trains of unit
Dirac impulses from a number of other neurons and emits a
similar output spike train. We define the set of firing times of
the ith input as Xi, and the set of firing times of the output as
Y, where and n is the number of inputs. (1,..., nY f X X=)

)−

)t

The neurons are connected to each other by synapses. The
synapses behave as linear filters of the input spike with an
impulse response given by wiε(t), where wi is the connection
strength. For a realistic neuron, ε(t) must be causal and must
approach 0 at t = ∞. The responses of all the synapses are
added together to form the cell potential v(t). Thus,

 (1) ()
()

()(
1 x

ii

n
x

i i
i t X

v t w t tε
= ∈

= ∑ ∑
When the cell potential reaches a threshold γ(t) at time t (y),

the neuron fires and the threshold is increased by η(t – t (y)).
For a realistic neuron, η(t) must be causal and must approach
0 at t = ∞. Using a time-varying threshold to describe the
SRM is referred to as the dynamic threshold model [3]. In
general, the threshold is given by

 (2) () ()(
()

0
y

y

t Y

t tγ γ η
∈

= + −∑
where γ0 is the initial threshold. A typical example how the
cell potential changes through time is shown in Fig. 2.

0 5 10 15
0

0.5

1

1.5

2

time

ce
ll

po
te

nt
ia

l

output
spike

dynamic
threshold

epsilon(t)

input
spike

Fig 2. Plot of the cell potential (solid line) and the

dynamic threshold (dashed line on top) versus time for
the SRM model. Each “hump” is the additive effect of
the synaptic input spike response on the cell potential.

SPIKE-LMS ALGORITHM

Following the derivation shown in [4] for the LMS
algorithm, we define the cost function as the difference
between the desired response and the output of the system.
When the system output is a spike train, this cost function has
many undesirable properties. For example, if we shift the
ideal output spike train y(t) = d(t) by any ε ≠ 0 to y(t – ε) =

d(t), then the cost function jumps from zero to the maximum
possible cost such that the time average of the two signals is
the same. If the desired signal is non-periodic, then in effect
there are only two values for the time average of the cost: 0
(when y(t) = d(t)) and twice the time average of the desired
response squared. This cost function is not desirable for
gradient descent because the gradient is zero everywhere
except at point discontinuities where it is infinite.
Nevertheless, we can use this definition to motivate an
understanding of the Spike-LMS algorithm. Let the cost be

 (2)J d y= − . (3)
Then

 ()2
i i

J y vd y
w v w
∂ ∂ ∂

= − −
∂ ∂ ∂

, (4)

and from definition of v, we have

 (
i

)s
s Si

v t t
w

ε
∀ ∈

∂
= −

∂ ∑ . (5)

The other partial derivative in (2), y v∂∂ , is not easily
defined because of the threshold firing behavior of y.
However, we know that that the true expression of iJ w∂ ∂ is
not useful, and the other terms in this expression are rather
simple, therefore y v∂ ∂ must be the cause of the undesirable
properties of iJ w∂ ∂ . Increasing v will generally shorten the
time of the next firing of y, in effect “increasing” y, thus

y v∂ ∂ should be positive. We will replace y v∂ ∂ with 1—
our only justification being that the resulting algorithm works
well. With this substitution, the gradient descent expression
becomes:

 () (2
i

)s
s Si

J d y t t
w

ε
∀ ∈

∂
≈ − − −

∂ ∑ (6)

The desired and output spike trains, d and y are trains of

impulses, so iJ w∂ ∂ can be expressed as:

() ()
() () (

() () (

0,
2 ,

2 ,
i

i

s
s S

i
s

s S

d t y t
t t y tJ

w
t t d t

ε δ

ε δ
∀ ∈

∀ ∈

=
 − =∂ ≈ ∂ − − =

∑

∑

)

)

0

0

)s

 (7)

Finally, if we adapt the weights according to the steepest
descent rule, we get the following algorithm we call the
Spike-LMS algorithm (ξ is the step-size parameter):

1. When the output y fires update wi so that
 (

i

i i
s S

w w t tξ ε
∀ ∈

← − ∑ −

)s

 (8)

2. When the desired response d fires, update wi so that
 (

i

i i
s S

w w t tξ ε
∀ ∈

← + ∑ − (9)

Note that if both d and y fire at the same time, the two
updates cancel each other, which is what we expect.

Alternatively, the Spike-LMS algorithm can be thought out
as a combination of Hebbian and anti-Hebbian learning.
Hebbian learning is used between the pre-synaptic input spike
trains x1…xN, and the desired spike train d. Anti-Hebbian
learning is used between x1…xN, and the output spike train y.
This is the same concept used in Widrow’s LMS algorithm
for linear adaptive systems [4]. In that algorithm, the weight
update for each input is proportional to the product of the
input and the error between the output and desired response:

()i i

i i

w x d y
x d x

η
η η

∆ = −

= − y
 (10)

The first term is a Hebbian-like update between the input
and the desired response and the second term is an anti-
Hebbian update between the input and the output [5].

SIMULATION RESULTS
In the preceding section, we described an algorithm for

updating the synaptic weights of a spiking neuron to perform
supervised learning and system identification. In this section,
we will show some simulations. To demonstrate the system,
we use generated Poisson spike trains with a constant rate.
Past work in neuroscience shows that spike trains produced
by the brain can be roughly modeled as being Poisson
distributed point processes [6].

To simulate the SRM neuron we chose ε(t) to be the
response of a linear second-order filter with a double real
pole, i.e.

 () expttε t
τ τ

= −
 


 . (11)

We chose η(t) to be a decaying exponential with the same
time constant as ε(t), i.e.

 () exp ttη
τ

= −
 


 , (12)

and we chose γ0 = 1.
These choices make the SRM behave equivalently to the

second-order Integrate-and-Fire model. Additionally, these
choices were easily implemented using an event driven
simulator to model them. Using a discrete-time simulation
would require much more computation and/or introduce
quantization artifacts, depending on the resolution of the time
slicing.

The simulated neural architecture was setup as shown in
Fig. 1 with two neurons identical in everything except the
synaptic weights. The weights for the neuron that produces
the desired response were fixed, and the weights for the
neuron that produces the output were varied. The inputs were
applied to both spike trains simultaneously. After each spike
produced by the desired neuron, the weights are increased
according to (9), and after each spike produced by the output
neuron, the weights are decreased according to (8). Gaussian
jitter (σ = 1ms) was added to the desired spike train to test the
system for noise robustness.

In the experiment shown in Figs. 3-5, we examine the
performance of the Spike-LMS algorithm when used with
Poisson input spike trains. The Poisson spike trains emitted
spikes at an average rate of 100 Hz, 50 Hz and 25 Hz for
inputs 1, 2 and 3, respectively. The weights of the synaptic
connections for the neuron producing the desired response
were fixed at 0.4, 0.2 and 0.5. Figs. 3 and 4 show the weight
tracks of the LMS algorithm as learning takes place. The
weight tracks take some time to converge, especially for the
second input, which has the slowest firing rate.

The filter parameter τ is larger in Fig. 4 that in Fig. 3,
which causes the convergence rate to be slower. In fact, the
weight convergence time will be large if τ is too large or too
small. As τ gets larger, the output fires more often because
the input spikes have a better chance of adding up above the
threshold before the spike response decays, and the rate of
weight updates will increase proportionally. If τ is too small,
then very few output spikes will be produced, thus increasing
the convergence time. The reason for this is that for each
output spike, there are more contributions from a larger
number of input spikes. Thus, it is likely that an input spike
regardless of synaptic weight will be adjusted up and down
by the algorithm on desired spikes and output spikes,
respectively. These noisy take longer to converge, even
though there are more of them. On the other hand, if τ is
much smaller than the spike rate, only spikes that occur very
close in time will increase the cell potential past the
threshold, and weights will take a long time to converge.

Fig. 5 shows the last twelve output spikes and the
associated desired response for this experiment with τ =
10ms. This shows that once the weights are trained the output
matches the desired response very closely.

Fig 3. Weight tracks of the Spike LMS algorithm

with τ = 10ms. Average spike rates are 100 Hz, 25 Hz
and 50 Hz for inputs 1, 2 and 3, respectively. The

step size η is 0.002.

Fig 4. Weight tracks of the Spike LMS algorithm

with τ = 50ms. Average spike rates are 100 Hz, 25 Hz
and 50 Hz for inputs 1, 2 and 3, respectively. The

step size ξ is 0.002.

CONCLUSION

We have shown that the Spike-LMS algorithm is able to
identify the synaptic weights of an SRM neuron given its
inputs and outputs. This weight adaptation mechanism is not
dependent on any neural encoding scheme applied to the
spike trains, and assumes very little about the nature of the
spike trains themselves, in contrast to previously proposed
supervised learning methods. The algorithm presented here is
simple, yet robust. Adaptive step-size techniques used in
many other artificial neural network algorithms can also be
easily applied to the Spike-LMS to improve convergence and
the misadjustment of the adapted weight values.

We know from biology and from the power of human
intelligence that spike trains are an extremely powerful and
robust method of representing real-world data. Unfortunately,
we still do not understand how this data is encoded into spike
trains; it is likely that the number of encoding methods used
in biology is large and each method is tailored to a specific
adaptation. The power of the algorithm presented here is that
it does not require knowledge of the encoding method, and
should work wherever the SRM model is applicable.

The utility of this algorithm probably will not lie with its
ability to learn static data by converting it into spike trains
using some encoding scheme, although this is certainly
possible. Rather it can be used as a tool to explore the
possibilities of learning when using spiking neurons.

Fig. 5. Plot of the desired spike train (d) and the

output spike train (y) after weight convergence of
the last 12 spikes. Notice that the spike trains are

almost identical. Here, τ = 10ms. The average
absolute error between these sets of spikes is

0.4ms.

A specific application of this idea is in modeling small

biological neural networks. If the spike trains of the
biological network can be probed, this algorithm can be used
to model biology by finding the synaptic weights. The
weights can then be used in an SRM artificial neural network
that mimics biology.

REFERENCES

[1] Gerstner, W. “Spiking Neurons”, in Pulsed Neural
Networks, Maass, W. & Bishop, C.M. (Eds.). MIT Press,
Mass. 2002.

[2] Bohte, S.M., Kok, J.N. & La Poutré, H, “Error-
Backpropagation in Temporally Encoded Networks of
Spiking Neurons”, Neurocomputing, November 2002,
48(1-4), pp 17-37.

[3] Gerstner, W., “A Framework for Spiking Neuron
Models: The Spike Response Model”, in The Handbook
of Biological Physics, Gielen, S. et al. (Eds.) Elsevier,
Amsterdam. 1999.

[4] Haykin, S., Adaptive Filter Theory, fourth edition.
Prentice Hall, NJ, 2002.

[5] Principe, J.C., Euliano, N.R. & Lefebvre, C.W., Neural
and Adaptive Systems: Fundamentals through
Simulations. John Wiley & Sons, Inc. 2000.

[6] Rieke, F. (1997) Spikes: Exploring the Neural Code.
MIT Press, Mass.

