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 Abstract – It has been shown that a framework 
composed of digital signal processing (DSP) elements can 
be used to simulate and study Freeman’s model of the 
biologically realistic olfactory cortex. In this paper, based 
on impulse invariant transformation, a DSP environment 
has been developed corresponding to the original 
continuous-time dynamical system. The performance of 
the DSP system is quantitatively evaluated by comparing 
with the original system, which is implemented using the 
traditional Runge-Kutta integration technique. The 
discrete-time architecture is shown to have high 
performance in approximating the dynamical behavior of 
the original system. 
 

I. INTRODUCTION 
 

Researchers have long been interested in understanding 
how the brain works. Freeman [1], who developed a 
biologically realistic dynamical model for the olfactory 
cortex that conforms to the anatomical and physiological 
properties of the olfactory system, made a major contribution 
to the understanding of the behavior of biological neural 
networks. The mentioned model is a complex dynamical 
system built on the principle of coupled nonlinear oscillators, 
where the core of the architecture is a simple second order 
nonlinear dynamical element. According to Katchalsky these 
basic units are organized in the model in a hierarchy of levels 
designated by K0, KI, KII, and KIII [1]. The lowest level in 
the hierarchy of complexity, the K0 set, is identified by the 
second order dynamics given by 
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where a and b are real time constants determined 
experimentally, u(t) is the forcing input, and y(t) is the 
filter output [1][2]. 

A continuous time differential equation such as (1) has to 
be discretized in order to simulate in a digital computer 
environment. Previously, a digital system corresponding to 
Freeman’s original dynamical system was developed based 
on the impulse invariant transformation [3]. Gamma filter 
architecture [4] was employed to form the basis of this 
approach to approximately realize the olfactory system in a 
digital setup. 

In this paper, the performance of the gamma filter 
architecture is evaluated quantitatively through an output 
comparison with the original system, which is realized 

using Runge-Kutta integration [6]. In addition, an analysis 
of the performance of the direct implementation of the 
discretized system transfer function is carried out. The 
latter approach, which uses impulse invariance, reduces 
computational load, since the system identification stages 
necessary for designing the gamma filter approximation 
are avoided. It turns out that, in fact, the direct 
implementation results in better approximation of the 
continuous time olfactory system at the KII level 
according to the performance measure that is assumed. 
 

II. OVERVIEW OF THE FREEMAN MODEL 
 

Freeman proposed a biologically plausible model for the 
olfactory cortex, which is built from basic second order 
nonlinear elements in a hierarchy of levels designated by K0, 
KI, KII, and KIII [1]. The basic building block of the model 
is the K0 set, which is depicted in Fig. 1. This set has no 
functional interconnections among the elements of neural 
assembly. Every K0 unit can accept several inputs that are 
weighted and summed, and then convolved with a linear time 
invariant system defined by the second order dynamics H(s). 
The output of the linear dynamics is then shaped by the 
nonlinear function, which is experimentally determined to be 
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     The second level in the hierarchy, the KI set, is built from 
K0 units that interact through lateral inhibitory (-) or 
excitatory (+) feedback. An example KI element is 
demonstrated in Fig. 2, where the circles denote a K0 unit. A 
KI network can be formed by fully interconnecting KI sets. 
The inhibitory/excitatory connection strengths are determined 
by the weights of the network. 

The third level in the hierarchy, the KII set, is the most 
interesting and important building block of the olfactory 
system, since it is an oscillator controlled by the input. The 
response of the KII set to an impulse input is a damped 
oscillation whereas with a sustained input, the output 
oscillation is maintained as long as the input remains. The 
KII set is built from two KI sets, interacting through both 
excitatory and inhibitory connections. This architecture is 
shown in Fig. 3, where the circles again denote K0 sets. A 
KII network can be formed by fully interconnecting a number 
of KII sets. 

The final Katchalsky level is the KIII network and 
represents the olfactory cortex. The KIII model has several 
layers formed by K0, KI, KII sets that resemble the main This work was partially supported by ONR Grant N00014-01-0405. 



parts of the central olfactory system: the bulb (OB), anterior 
nucleus (AON), and prepyriform cortex (PC). For the full 
model of the KIII network, we refer the reader to [2]. 

For the purposes of this paper, the focus of numerical 
simulations will be on the reduced KII set, which behaves 
similar to the full KII set shown in Fig. 3. The reduced KII 
set is formed by connecting two K0 sets, one excitatory and 
one inhibitory. If the coupling weights are selected properly, 
the reduced KII is an oscillator controlled by the input [1]. 
 The reduced KII architecture is demonstrated in Fig. 4, 
where the two K0 units are denoted by M (for mitral cell) and 
G (for granular cell). In this model, the mitral cell takes the 
external input I (t) and the coupling strengths between M and 
G are controlled by the two weights Kmg>0 (excitatory) and 
Kgm<0 (inhibitory). The external input is allowed to be an 
impulse, a step, or arbitrarily time-varying. The governing 
equations for the reduced KII set are 
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where ym and yg denote the output of the linear dynamic 
portions of the K0 units for M and G, respectively [2]. 
 

III. DIGITAL IMPLEMENTATION APPROACHES 
 

In order to simulate continuous time equations in 
computer environment, discretization is employed. The 
traditional Runge-Kutta integration techniques [6] are not 
suitable for real-time implementations of such neural 
networks. However, in the design stage, the Runge-Kutta 
solution of the Freeman model can be utilized as a benchmark 
to determine performance. 

 
A. System Identification with Adaptive Gamma Filter 

 
Previously, DSP and system identification techniques 

based on the gamma filter approximation architecture were 
used to achieve discretized approximations to the olfactory 
system [3]. The gamma filter implementation requires the 
decomposition of the desired impulse response using gamma 
basis functions. This filter structure is based on the first-order 
generalized unit delay whose dynamics are defined as [4] 
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A second-order gamma filter structure is shown in Fig. 5. 
It was determined that the MSE-optimal weights for this 
second-order gamma filter to best approximate the 
continuous-time system impulse response are w0=-2.9x10-3, 
w1=1.245x10-1, w2=0.9016. The feedback parameter, which 
determines the average memory depth of the filter, was found 
as µ=0.237x10-1 [3]. 

Since gamma filter is an approximation to the desired 
transfer function, it does not preserve the impulse response 
exactly. Consequently, the step response is not also 
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Figure 1. The K0 set. 
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Figure 2. The KI set. 
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           Figure 3. The KII set.       Figure 4. The reduced KII set. 
pproximated accurately. The step response accuracy is 
articularly important in the discretization of the Freeman 
odel, because the inputs to the system are usually on-off 

ype square signals. There are at least two reasons for the 
ignificance of this type of input patterns: biological stimuli 
ay be represented as existent or non-existent, and piecewise 

onstant inputs lend more tractable dynamics that are easier 
o analyze and understand. In addition, since the system 
xhibits a tightly coupled oscillatory behavior, there is a high 
robability that any error will be amplified in time. 

 
. Direct Discretization with Impulse Invariance 

 
Alternatively, it is possible to design a discrete-time 

pproximation to the olfactory system using the direct 
iscretization approach. This approach eliminates the need to 
erform system identification and adaptive filter optimization 
asks, reducing design complexity. An improvement in the 
erformance of the approximation of the original continuous-
ime system by its discrete-time equivalent is expected, since 
he exact transfer function is used to generate the discretized 
pproximation instead of learning the approximation with a 
inite-tap adaptive gamma filter1.  

Consider the linear dynamical part of the K0 set defined 
y (1). The input-output transfer function is simply 
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 Although the gamma filter is IIR, it is considered a finite-tap filter because 
t contains only a finite number of generalized delay operators. 



which leads to a time-domain signal of 
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y(t) Using the impulse invariant transformation technique [5] with 
sampling period Ts, we obtain that the discrete approximation 
filter should possess the following impulse response. 
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 Letting =α , , saTe−1 sbTe−=2α )/(1 ababTc s −= , and 
, the transfer function of the equivalent 

digital system is finally determined to be 
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 In general, discretization of continuous-time signals is 
susceptible to aliasing. However, in this case, the continuous-
time system exhibits a low-pass filter behavior, since the 
poles a and b are positive real numbers. Therefore, aliasing 
error can be controlled by manipulating Ts [5]. 
 Implementation of the transfer function in (7) can be 
achieved using, for example, the parallel realization 
approach, which is shown in Fig. 6. This architecture is 
supported by many standard commercial DSP software or 
hardware products and can be efficiently implemented to 
operate accurately in real-time.  

 
C. Comparison of Impulse Responses 

 
 In this section, we present a comparison of the impulse 
and step responses of three systems: continuous-time original, 
discrete-time gamma filter approximation and discrete-time 
impulse-invariant approximation. The impulse responses are 
shown in Fig. 7 and the step responses are in Fig. 8. As a 
quantitative measure of similarity, we employ the mean-
square-error (MSE) between the impulse responses of the 
discrete-time approximations and the original filter. 
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Figure 5. Gamma filter implementation of LTI dynamics. 

 

 
Figure 6. Parallel implementation of LTI dynamics. 

 

 
Figure 7. Impulse responses of the three filters. 

 

 
Figure 8. Step responses of the three filters. 
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where hd and hc denote the impulse responses of the discrete 
and continuous-time filters. The impulse response MSE for 
the gamma filter and the impulse invariant filter 
approximations are found as 4.73x10-5 and 4.72x10-6, 
respectively. The noticeable one order of magnitude 
difference is mainly due to the approximation errors incurred 
on the gamma filter due to the finite tap length. 
 

IV. QUANTITATIVE PERFORMANCE ANALYSIS 
 
 The overall Freeman is a highly complex nonlinear 
dynamical system with coupled oscillations. Hence, the 
discrepancy between the dynamics of the linear portion of the 
basic K0 sets alone is not an accurate descriptor of the global 

behavior. In order to investigate the effect of the discrete-time 
approximation errors on the nonlinear behavior, we 
investigate the performance of the approximations on the 
reduced KII network, which might be considered as the 
smallest nonlinear unit representative of the global KIII 
dynamics.  



In particular, the reduced KII set, for specific choices of 
the connection weights, possesses a fixed point and a limit 
cycle. The operation mode of the coupled system is 
controlled by the on-off input signal. Moreover, we can 
achieve a comprehensive and decisive performance analysis, 
since the reduced KII set has only two parameters to be 
controlled: Kmg and Kgm. In the following numerical 
examples, the output of the reduced KII set is defined to be 
the output of the mitral K0 set (see Fig. 4). 

For comparison, the continuous-time system is simulated 
using the ODE45 built-in Runge-Kutta integration technique 
in Matlab® [6]. The digital network simulations are 
performed using the commercial software package 
Neurosolutions® [7], which is specialized for neural network 
simulations. Neurosolutions® has all the basic building blocks 
necessary to implement the discretized Freeman model. The 
software has a graphical user-interface, which allows building 
an icon-based reduced KII model. 

Ideally, with the input on, if the connection weights are 
appropriate, the KII model will exhibit sustained oscillations. 
Therefore, the digital simulators are expected to behave 
exactly the same way as the original system. The 
performance of the digital systems are measured by the 
distance between the points in the parameter space [Kmg,Kgm] 
at which bifurcation occurs. The following measure is 
defined to provide a percentage-parameter-error (PPE) to 
quantify the approximation quality. 
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In (9), Kc is the |Kgm| (or |Kmg|) value at which the continuous-
time system switches from non-oscillatory to oscillatory 
behavior while Kmg (or Kgm) is kept fixed. Kd is, similarly, the 
parameter value for the discrete-time approximation under 
consideration (either the gamma filter or the impulse 
invariant filter). 
 In the following simulations, the input is assumed to be 
on continuously and the sampling frequency for the impulse 
invariant filter is taken as 20 times the faster pole in the 
continuous-time linear dynamics for alias-free approximation 
[5]. Fig. 9, 10, 11 show the outputs of the continuous-time 
and discrete-time reduced KII sets where Kmg is kept constant 
and Kgm is varied until bifurcation is observed. According to 
the PPE measure, the approximation errors of the gamma and 
impulse invariant filter approximations are determined as 
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 Clearly, the PPE for both approaches will decrease as the 
sampling frequency of the impulse response is increased. For 
each different sampling frequency the gamma filter method 
requires solving a linear system identification problem with a 
nonlinear optimization index. The impulse invariant filter 
method, however, is easily modified for the new sampling 

frequency by simply reevaluating the values for the discrete 
transfer function parameters in (7). Therefore, only the 
performance of the impulse invariant method is investigated 
versus increasing sampling frequency. The performance 
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Figure 9. Behavior of continuous-time reduced KII set for Kmg=1 switches
from a point attractor to a limit cycle as Kgm=-3, -3.5, -4.25, 4.5. Bifurcation
occurs at Kgm=-4.27. 
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Figure 10. Behavior of gamma filter approximation of reduced KII set for
Kmg=1 switches from a point attractor to a limit cycle as Kgm=-3, -3.25, -3.5, -
4.25. Bifurcation occurs at Kgm=-3.22. 
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Figure 11. Behavior of impulse invariant filter approximation of reduced KII
set for Kmg=1 switches from a point attractor to a limit cycle as Kgm=-3, -3.5,
-4, -4.5. Bifurcation occurs at Kgm=-3.95. 



(PPE) of the impulse invariant method versus 1/Ts is shown 
in Fig. 12. On the other hand, increasing sampling frequency 
will increase the computation requirements of the discretized 
systems. This creates a trade-off between modeling accuracy 
and computation speed controlled by the sampling period. 
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 In general, the dynamic behavior of the reduced KII sets 
for the original continuous-time system, the gamma filter 
approximation, and the impulse invariant approximation are 
segmented into two regions in the parameter space by the 
boundaries shown in Fig. 13. As observed from this plot, the 
bifurcation boundary for the gamma filter approximation is 
farther to the bifurcation boundary of the original system than 
the boundary of the impulse invariant approximation. This 
analysis assures the better performance of the impulse 
invariant approximation compared to the gamma filter 
approach. 
 

V. CONCLUSIONS 
 

Freeman’s dynamical model for the olfactory cortex 
provides an insight to how the brain operates in processing 
information from external stimuli. The general trend in neural 
engineering is to incorporate more biologically realistic 
neural network models to the solution of engineering 
problems of various natures. In this respect, this dynamical 
model of the olfactory cortex, an area responsible for 
processing sensory information, offers a potential 
improvement in designing innovative information processing 
systems. A first step to this end is designing efficient, 
accurate, and fast (real-time) approximations of this 
continuous-time, nonlinear dynamical system. 

In this paper, this problem is tackled in a DSP 
framework, where two discrete-time models that approximate 
the behavior of the actual dynamics are investigated. A 
quantitative performance comparison of the two 
approximation methods, namely the gamma filter and the 
impulse invariant filter approaches, is provided.  

Experiments performed on the relatively simple reduced 
KII set demonstrated the better accuracy of the impulse 
invariant filter design approach. Future work will expand the 
results provided herein to the more complicated KIII 
network. A more difficult problem that is yet to be solved is 
the design of a read-out protocol that will allow the use of 
this system as a dynamical associative memory. 
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Figure 12. PPE of impulse invariant method versus sampling frequency.  

 

0.5 1 1.5 2 2.5 3 3.5 4 4.5
1

1.5

2

2.5

3

3.5

4

K gm

K
m

g

continuous-time
impulse inv. f ilter
gamma filter

L im it cyc le Region 

F ixed Point Region 

 
gure 13. Boundaries between oscillatory and convergent dynamics in the 
rameter space of the reduced KII set.   
Ph.D. Dissertation, University of Florida, Gainesville, 
FL, 2001.  
B. De Vries, Temporal Processing with Neural 
Networks-The Development of the Gamma Model, Ph.D. 
Dissertation, University of Florida, Gainesville, FL, 
1991. 
A.V. Oppenheim, R.W. Schafer, Discrete Time Signal 
Processing, Prentice Hall, Englewood Cliffs, NJ, 1989. 
The MathWorks, Inc. ‘http://www.mathworks.com” 
NeuroDimension, Inc. ‘http://www.nd.com” 


	A.System Identification with Adaptive Gamma Filter
	B.Direct Discretization with Impulse Invariance
	C.Comparison of Impulse Responses

