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ABSTRACT

In this paper, a new blind equalization algorithm for
multilevel modulations is proposed. It is based on maxi-
mizing the correlation between the probability density func-
tion (pdf) of the signal at the output of the equalizer and
the desired pdf. The algorithm employs the Parzen window
method to estimate the pdf of the squared modulus of the
equalizer output. A stochastic gradient-based algorithm is
used to maximize the correlation between this pdf and the
pdf of the corresponding modulation. The proposed algo-
rithm shows an excellent performance when compared with
conventional adaptive blind algorithms, such as CMA, in
quadrature amplitude modulation (QAM) schemes.

1. INTRODUCTION

Equalization is an important problem in digital high-speed
communication systems and it has received a great amount
of attention. Conventional equalization requires transmit-
ting a training sequence that is known at the receiver. This
sequence allows the adaptation of the equalizer parameters
to minimize some error measurement (typically the mean
square error) between the actual equalizer output and the de-
sired response (the training sequence). When a linear filter
is used to implement the equalizer, there are many adaptive
algorithms that can be used to adapt the filter weights, for
example the well known LMS [1].

When the transmission of a training sequence is not pos-
sible or practical, the problem at hand is named blind equal-
ization. In this case, the only knowledge about the trans-
mitted sequence is limited to its probabilistic or statistical
properties. Blind equalization algorithms minimize a cost
function that is able to indirectly extract the higher order
statistics of the signal or the current level of ISI at the equal-
izer output [2]. Typically, the cost function is minimized by
means of stochastic gradient algorithms. To this class of al-
gorithms belong the Sato algorithm [3], which was the first
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blind technique for multilevel PAM signals, the Godard al-
gorithms [4], or the Constant Modulus Algorithm (CMA)
[5], a specific case of Godard algorithms, which is proba-
bly the most popular of blind equalization techniques. The
main drawback of these algorithms when applied to com-
munications is that they usually need a high number of data
symbols to achieve convergence.

Several attempts have been made to improve the con-
vergence speed of conventional blind techniques. Recently,
Renyi’s entropy has been introduced as a cost function for
blind equalization of constant modulus signals [6]. This ap-
proach uses an efficient nonparametric estimator of this en-
tropy measurement, based on the Parzen window method, to
estimate the underlying pdf. Although this method provides
excellent results for some channels, it fails to equalize other
ones. The same authors have proposed, for constant mod-
ulus signals, a new method based on quadratic pdf match-
ing [7]. In this case, the cost function is the integral of the
squared difference between the estimated pdf and a target
pdf. A simple Gaussian model is assumed for the target pdf.

In this paper, we propose a new cost function for mul-
tilevel modulations: the correlation between the equalizer
output pdf and the desired one. The pdf is estimated using
the well-known Parzen window technique, and a stochastic
gradient algorithm has been developed to allow on-line im-
plementation. This method has been applied to quadrature
amplitude modulation (QAM) schemes, where it provides
better results than the CMA algorithm.

2. THE NEW COST FUNCTION

For digital modulations, blind equalization can be stated as
follows: a sequence{sk} of i.i.d. complex symbols belong-
ing to the constellation of any digital modulation is sent
through a channel that usually is described by means of
its discrete time complex coefficientshk (assuming a FIR
channel). In this case, the output channel can be obtained
by

xk =
Lh−1∑
n=0

hnsk−n + ek, (1)



where the noise sequenceek is typically modeled by a zero-
mean white Gaussian noise process.

The blind equalizer will operate over the channel output
in order to reduce, or ideally to completely remove, the in-
tersymbol interference (ISI) introduced by the channel. In
this approach we will use a linear equalizer implemented by
means of a FIR filter; therefore, the equalizer output is given
in this case by

yk =
Lw−1∑
n=0

wnxk−n = wTxk, (2)

wherew is the vector of filter coefficients to be adapted by
the blind equalization algorithm to minimize ISI. Usually,
the blind algorithm makes use ofa priori known statistics
of the input signal. For instance, the Godard algorithms [4]
propose to minimize the following cost function

JG(w) = E
[
(|yk|p −Rp)2

]
, (3)

whereRp = E[|yk|2p]/E[|yk|p]. CMA corresponds to the
Godard algorithm forp = 2.

Information theory is an interesting alternative when the
goal is to extract as much information as possible from the
available data. The data distribution includes more infor-
mation than the ratioRp. In this case, it is possible to
make use of thea priori knowledge of the probability den-
sity function (pdf) ofSp = {|sk|p}, and to try to mini-
mize some distance between the actual pdf of the equal-
izer output and this desired pdf. There are several pdf di-
vergence measures based on information theory: Kullback-
Leibler’s divergence, Bhattacharya distance, Chernoff dis-
tance or Renyi’s divergence are some examples. In [8], the
following cost function has been proposed in an application
of information theory to clustering:

J(w) =
∫ +∞

−∞
fY p(z)fSp(z)dz, (4)

whereY p = {|yk|p}, andfZ(z) denotes the pdf ofZ at z.
J(w) is the correlation between both pdf’s, and a maximum
is obtained when the pdf ofY p matchesfSp(z). Therefore,
we have labeled this approach asmatched-pdf.

It is necessary to note that, theoretically, the global max-
imum of (4) is obtained whenfY p(z) is a delta located at the
maximum offSp(z). In order to obtain the desired solution,
some constraints have to be introduced. In this case, the un-
derlying structure of the transmitted modulation and the pdf
estimator (with a suitableσ) act as constraints, which pre-
ventfY p(z) to converge to a delta function. This allows the
algorithm to converge towards the desired solution,fSp(z).
Further work is necessary to formally state these constraints
and their effects.

The Parzen window method is used to estimate the cur-
rent pdf. Given a window of theL previous symbols, the

estimate of the pdffY p(z) at timek is

f̂Y p(z) =
1
L

L−1∑
i=0

Kσo
(z − |yk−i|p). (5)

whereKσ(x) is the Parzen window kernel of sizeσ. In this
approach, Gaussian kernels with standard deviationσ are
employed. For the sake of consistency, the target pdf must
be the convolution of the original one with the kernel of the
Parzen estimator we are using to estimatefY p(z), i.e.

f̂Sp(z) =
1

Ns

Ns−1∑
i=0

Kσo(z − |si|p), (6)

whereNs is the number of complex symbols in the constel-
lation of the corresponding modulation.

Finally, substituting (5) and (6) in (4), rearranging terms
and taking into account that for Gaussian kernels∫ +∞

−∞
Kσ(y−C1)Kσ(y−C2)dy = Kσ

√
2(C1−C2), (7)

we obtain the following expression for the cost function

J(w) =
1

LNs

Ns∑
i=1

L−1∑
j=0

Kσ(|yk−j |p − |si|p). (8)

For the sake of simplicity in the notation, we denoteσo

√
2

asσ.

3. STOCHASTIC GRADIENT ALGORITHM

To minimize the cost function (8), a gradient descent tech-
nique will be used. In order to reduce the computational
burden at each step, which is convenient to on-line imple-
mentations of the algorithm, we have considered a stochas-
tic gradient approach using a window lengthL = 1. We
will focus onp = 2, which is the more interesting case. Un-
der these assumptions, the derivative of (8) with respect to
the equalizer weights is given by

dJ(wk)
dwk

=
1

Ns

Ns∑
i=1

K ′
σ(|yk|2 − |si|2)ykx∗k, (9)

where superscript∗ denotes complex conjugate andK ′
σ(x)

is the derivative of the kernel function. Finally, the equalizer
weights are adapted by

wk+1 = wk + µσ
dJ(wk)

dwk
. (10)



3.1. Implementation details

In (10), we have employedµσ = µσ3. The factorσ3 has
been introduced to compensate the term1/σ3 that appears
in K ′

σ(x) for Gaussian kernels. Moreover, taking into ac-
count that several symbols have the same module for the
constellation of any modulation, the second term in the right
side of (9) can be substituted by a weighted sum of all pos-
sible values of|si|2. For instance, a 16QAM modulation
has only 3 different values for|si|2. This helps to reduce
the computational burden of the method.

An important aspect of the algorithm is the selection of
the kernel sizeσ. The kernel size determines the conver-
gence speed and the accuracy of the final solution. For the
sake of speed, a large kernel size is necessary, but we find
the opposed requirement for the sake of accuracy. Conver-
gence speed is the main requirement for equalizers work-
ing in communication systems. Typically, blind algorithms
must operate until ISI is sufficiently reduced to open the eye
of the constellation. At this moment, a switch to decision di-
rected equalization is performed, providing an accurate final
solution. Therefore, we will choice a large initial kernel size
in order to reinforce convergence speed.

When using a large kernel size (a large amount of over-
lapping inf̂Sp(y)), the stochastic algorithm tends to slightly
scale down the equalizer output. This behavior is due to the
kernel overlapping, which affects the estimated pdf. In this
case, the pdf at the output of the equalizer corresponding
to the maximum ofJ(w) is a scaled version of the desired
pdf. This means that the matched pdf technique equalizes
the channel up to a gain constant; the final gain can be easily
compensated after convergence.

When a small kernel size is selected (a small amount
of overlapping inf̂Sp(y)), the desired solution is a maxi-
mum ofJ(w). Therefore, there is no scaling effect. More-
over, in this case a very accurate final solution can be ob-
tained. Taking this into account, it is also possible to use the
same algorithm switching only the kernel size as compared
to switching to decision directed equalization as is done in
CMA systems. We will show that this alternative provides
similar results to decision directed equalization.

4. RESULTS

The proposed method has been tested in several different
types of channels. In this section we will compare, for
QAM signals, the performance of the proposed algorithm
and the Constant Modulus Algorithm (CMA) [5] (Godard
algorithm forp = 2), which is surely the most commonly
employed blind algorithm in communication systems. The
following figure of merit, which measures the intersymbol
interference (ISI), will be used to compare the performance

of the methods

ISI = 10 log10

∑
n |θn|2 −maxn |θn|2

maxn |θn|2
, (11)

whereθ = h ∗ w is the combined impulse response of the
channel-equalizer block.

In the first example we have considered a 16 QAM mod-
ulation (±{1, 3} levels for in phase and quadrature compo-
nents) and the following channel

H1(z) = (0.2258+0.5161z−1 +0.6452z−2 +0.5161z−3).

White Gaussian noise, with a signal to noise ratio (SNR)
of 30 dB, has been added at the output of the channel. For
the equalizer, a filter withLw = 21 taps and tap-centering
initialization has been employed. A step sizeµ =5e-5 and
a kernel sizeσ = 15 have been selected for matched-pdf
approach. This large kernel size has been selected because
the main goal here is to maximize the convergence speed.
Figure 1 compares the average results obtained in 100 Mon-
tecarlo trials with those obtained with the CMA algorithm
using the step sizesµ =1e-5 (the largest value for which all
simulations converged).
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Fig. 1. Convergence for a 16 QAM system in channelH1(z)

It can be seen how the matched-pdf approach converges
faster than CMA. In this channel CMA shows a slow con-
vergence, while the proposed approach is able to obtain a
relevant improvement in convergence speed. The same be-
havior has been observed in several different channels. For
instance, we have also tested the following nonminimum
phase channel

H2(z) =
ej π

4

1.41
[0.4−0.6z−1 +1.1z−2−0.5z−3 +0.1z−4].

In this case,µ = 3e− 5 andµ = 1e− 4 have been selected
for CMA and matched-pdf respectively, which are the val-
ues that provide the fastest stable convergence in both cases.
The convergence results are plotted in Figure 2.
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Fig. 2. Convergence for a 16 QAM system in channelH2(z)

Again, the matched-pdf approach provides a better con-
vergence than CMA. We want to remark that both methods
have been tested over a large number of channels and we
have not found a single case where CMA outperforms the
proposed matched-pdf approach.

These results show that a large kernel size provides a
fast convergence. However, to obtain a finer equalization,
a small kernel size is more appropriate. Figure 3 shows
the ISI evolution usingσ = 2 for H2(z), after the initial
convergence has been achieved usingσ = 15. A scale
correction has been performed before changing the kernel
size. A simple measurement of the mean value of the cur-
rent pdf has been employed to implement this correction.
The matched-pdf performance is compared with decision
directed equalization (DDE), which is the more common
equalization technique to refine an initial blind equalization.
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Fig. 3. Refinement with a small-kernel size inH2(z)

We can see that the refinement obtained using matched-
pdf is very similar to the DDE refinement. In this case, the

small kernel size allows only the interaction of a constella-
tion symbol|si|2 with samples that are near enough in the
squared modulus space. This limited interaction produces,
in practice, a decision directed operation.

5. CONCLUSIONS

The correlation between the actual output pdf and the pdf
of the underlying modulation has been introduced as a new
cost function for blind equalization. In terms of conver-
gence speed, the proposed method has shown better results
than CMA in a large number of channels using 16QAM
modulation.

On the other hand, the kernel size of the Parzen win-
dow method can be employed as a switching mechanism be-
tween blind and decision directed equalization. This strat-
egy is able to provide the same refinement as conventional
decision directed equalization.
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