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Abstract. Minimum MSE plays an indispensable role in learning and 
adaptation of neural systems. Nevertheless, the instantaneous value of the 
modeling error alone does not convey sufficient information about the 
accuracy of the estimated model in representing the underlying structure 
of the data. In this paper, we propose an extension to the traditional MSE 
cost function, a regularization term based on the incremental errors in 
model output. We demonstrate the stochastic equivalence between the 
proposed regularization term and the error entropy. Finally, we derive an 
RLS-type algorithm for the proposed cost function, which we call 
recursive least squares with entropy regularization (RLSER) algorithm. 
The performance of RLSER is shown to be better than RLS in supervised 
training with noisy data. 
 
 

1. Introduction 
 
 
The interest in MSE roots from the analytical simplicities that arise when the 
adaptive structure is a simple linear neuron (ADALINE) [1]. In this case, the 
optimal MSE solution for the weight vector is given by the Wiener-Hopf 
equation [2]. In on-line adaptation, the weights are updated by LMS or RLS [2]. 
Since RLS uses a second-order weight update, it converges much faster than 
LMS, which uses a stochastic gradient update. The success of RLS lies in its 
low-complexity updating of the inverse of the input covariance matrix. This 
avoids the requirement of a matrix inversion. Nevertheless, RLS also has 
shortcomings. It is susceptible to noise in the training data, which results in a 
biased estimate of the covariance matrix, and its inverse. 
 The MSE and associated algorithms fail to take into consideration the 
behavior of the modeling error over time. For an adaptive system to successfully 
extract the model behind the data, it is necessary to account for the behavior of 
error in consecutive updates. This could allow robust noise rejection and 
facilitate continuity of the success of the estimated model. One way to achieve 
such performance improvements through simple modifications to the traditional 
MSE cost function, which is given by , is to introduce a regularization 
term to modify the cost function to 
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The proposed cost function tries to minimize the MSE, while it pays attention to 
maintaining the variation between consecutive errors small. Especially near the 



optimal solution, we expect this behavior to help provide additional robustness 
to present noise in the training data. In this paper, we will show that there still 
exists an analytic solution for the optimal weights of the combined cost.  
 The regularization term in (1) could be also obtained from Shannon’s 
entropy estimated using Parzen windows. We will demonstrate how the 
instantaneous increments in error are related stochastically to the entropy of the 
error. Recently, we have proposed the use of minimum error entropy (MEE) as 
an alternative information theoretic learning criterion [3]. We have shown that 
minimizing the error entropy in a supervised training scenario is equivalent to 
minimizing information theoretic divergence measures between the joint 
densities of the input-output and input-desired signal pairs (for Shannon’s 
entropy, this is the Kullback-Leibler divergence) [4]. A stochastic gradient for 
entropy, called the stochastic information gradient (SIG) was derived and 
applied successfully to learning problems [5]. For ADALINE, in the special case 
of Gaussian kernels in Parzen windowing, it could be shown that SIG becomes a 
stochastic gradient for the regularization term in (1), as well [5]. SIG has a very 
interesting structure that exploits relations between sequential errors in time. 
Hence, when applied in conjunction with LMS, can be thought as a 
regularization of the jaggedness of the trajectory in the weight space.  
 The convergence speed and the misadjustment of these gradient-based 
algorithms are susceptible to the selected step size. In this paper, motivated by 
this regularization property, we derive an entropy regularized RLS algorithm for 
the proposed regularized MSE cost function. In the following, we will present 
the entropy estimator and the steps that lead to SIG and the RLSER (recursive 
least squares with entropy regularization) algorithm. The performance of RLSER 
is compared with that of RLS in ADALINE training where both input and 
desired samples are contaminated with white noise.  
 
 
2.  Entropy and Regularization 
 
 
In general, the parametric error pdf in supervised learning is not known. In such 
circumstances, non-parametric approaches are used. Parzen windowing is a non-
parametric density estimation method that is simple and smooth pdf estimates can be 
obtained [6]. Given the iid samples {x1,…,xN}, the Parzen window estimate for the 

underlying pdf fX(.) is obtained by , where κ∑ =
−=
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the kernel function and σ is the kernel size. Typically, Gaussian kernels are preferred. 
Shannon’s entropy for a random variable X with pdf fX(.) is defined as [7] 
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Given iid samples, the entropy of X can be estimated using [5] 
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In order to arrive at this estimator, we write (2) as an expectation and substitute the 
Parzen estimate. In on-line applications of this entropy cost function, it is desirable to 
utilize a stochastic approximation to the entropy, and to its gradient if steepest descent 
is used. Viola proposed a similar entropy estimator, however, he suggested dividing 
the samples into two subsets: one for estimating the pdf, and one for evaluating the 
expectation in the entropy [8]. To obtain a stochastic estimator, we approximate the 
expectation by evaluating the argument at the most recent sample [5]. Then, 
estimating the pdf using the most recent L samples, the O(L) complexity stochastic 
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 For supervised training of an ADALINE with weight vector , given the 
input-desired training sequence (u

nw ℜ∈

kdk,dk), where  and , the 

instantaneous error is given by e . Then, for the specific choice of L=1 
and a Gaussian kernel function, the stochastic gradient of the error entropy (SIG) with 
respect to the weights becomes ( e ) 
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Note that the simplified SIG in (5) is also the stochastic gradient for the cost 
function . Taking the derivative after dropping the 
expectation from the definition of J and evaluating the argument using the most 
recent two samples, we arrive at (4). The approximate equivalence between the 
minimizations of J and 
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H  makes sense, because when the entropy of the error 
samples is small, then they are close to each other, thus the kernel evaluations in 
(3) can be approximated using the quadratic Taylor approximation to the kernel. 
Hence, the cost function becomes simply the squared instantaneous increments 
in the error. We have shown that when an ADALINE is trained under noisy data 
using the MSE or MEE with batch learning methods, it learns the underlying 
weights more accurately in the finite-sample case, when trained using MEE 
rather than MSE [5]. Motivated by this, we aim to incorporate the noise rejection 
capability of entropy into the RLS algorithm by combining the two cost 
functions for ADALINE training as described in (1). 

 
3.  RLS with Entropy Regularization 
 
 
In practice, there is noise present in the data that leads to biased solutions when MSE 
is the optimality criterion. This might cause large differences between consecutive 
error samples. In order to counter this problem, the regularized MSE function in (1) 
could be used, where λ<0 . It can be shown that (1) is equivalently written as 
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gradient of (5) and equating to zero yields a Wiener-type solution. 
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Letting Q )( 1RR λ+=  and V )( 1PP λ+= , we obtain the following recursions. 
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At this point, we employ the Sherman-Morrison-Woodbury identity, which is 
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we obtain . Therefore, the 
recursion for the inverse of Q becomes 
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Notice that the update of Q  requires a matrix inversion of only the 2x2 matrix 

. The recursion for V, is much simpler to obtain. 
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The overall complexity of this algorithm is O(n2), the same as the classical RLS 
algorithm. The optimal weights are estimated at each step by . We 
call this algorithm recursive least squares with entropy regularization (RLSER), since 
it minimizes a regularized MSE cost function, where the importance given to the 
regularization portion is determined by the parameter λ. 
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4.  Performance of  RLSER and Comparison with RLS 
 
 
In the preceding section, we developed the RLSER algorithm, which has the same 
computational complexity as RLS, yet it also minimizes the square of the derivative 
of the error, leading to smoother transition in the weight space in noisy situations. In 
this section, we will perform Monte Carlo simulations to compare RLS and RLSER in 
supervised training of ADALINEs with noisy training data. For simplicity, the length 
of the adaptive system was set to that of the reference model. Linear structures with 
length L = 5, 10, 15, and 20 were used. For each filter length, noisy (white Gaussian) 
data samples with signal-to noise ratio (SNR) of SNR = 0, 5, 10, 15, 20, 25, and 30 
dB, with noise on both the inputs and the desired output were generated. With the 
noisy training data, we created training sets of lengths N = 25, 50, 75, and 100. For 
each combination (L,N,SNR), 100 Monte Carlo simulations were performed using 
RLS and RLSER. In each simulation, the number of epochs is selected such that the 
total number of updates is 10000. For RLSER, we selected λ=1.  
 The results are summarized in Fig. 1 and Fig. 2. The performance of these two 
algorithms are compared based on their ability to yield ADALINE parameters that are 
close to the reference model parameters. In order to measure the divergence of the 
produced weight estimates from their actual values, we use the angle between the 
estimated and actual vectors (ideal would be zero) and the norm ratios of the 



estimated weights and the actual weights (ideal would be one). Observing the results 
in Fig. 1, we notice that almost for all combinations of L, N, and SNR, RLSER 
outperforms RLS in acquiring the direction of the actual weight vector from noisy 
data. The exception occurs only for large L, small N, and small SNR, but even then, 
the performances are very similar. Similarly, from Fig. 2, we deduce that RLSER is 
better in all cases except for the same situation as above. Although, we do not present 
simulations regarding the effect of λ, due to lack of space, we believe that by 
modifying it, RLSER could be tuned to outperform RLS for even these situations. 
 
 
5.  Conclusions 
 
 
Motivated by the noise rejection capabilities of the previously proposed minimum 
error entropy criterion in supervised training, in this paper, we proposed an extension 
to the traditional MSE criterion, which we called the regularized MSE. For this new 
cost function, we derived an RLS-type algorithm; called recursive regularized least 
squares (RLSER). This extended cost function for supervised ADALINE training 
includes the squares of the differences of consecutive modeling errors. We have 
demonstrated the superiority of the new criterion and the associated RLSER algorithm 
over RLS in noise rejection, when training data is corrupted with white noise, through 
extensive Monte Carlo simulations. RLSER is designed to have the same 
computational complexity as RLS, and is based on the same principles. Therefore, 
their convergence speed and computational requirements are identical. 
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9900394 and Xunta de Galicia project PGIDT-01PXI10503PR. 
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MS angle (degrees) between the estimated and actual weight vectors for various 
s of filter length (L) and sample size (N) versus SNR (dB) using RLS (solid) and 

RLSER (dashed). 

 
MS norm ratio of the estimated weight vector to actual weight vector for various 
s of filter length (L) and sample size (N) versus SNR (dB) using RLS (solid) and 

RLSER (dashed). 
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