
Accelerating the convergence speed of neural

networks learning methods using least squares

Oscar Fontenla-Romero1∗, Deniz Erdogmus2, Jose C. Principe2,
Amparo Alonso-Betanzos1, Enrique Castillo3

1Laboratory for Research and Development in Artificial Intelligence,
Department of Computer Science, University of A Coruña,

Campus de Elviña s/n, 15071 A Coruña, Spain

2Computational NeuroEngineering Laboratory,
Electrical and Computer Engineering Department,
University of Florida, Gainesville, FL 32611, USA

3Department of Applied Mathematics and Computational Sciences,
University of Cantabria and University of Castilla-La Mancha,

Avda de Los Castros s/n, 39005 Santander, Spain

Abstract. In this work a hybrid training scheme for the supervised
learning of feedforward neural networks is presented. In the proposed
method, the weights of the last layer are obtained employing linear least
squares while the weights of the previous layers are updated using a stan-
dard learning method. The goal of this hybrid method is to assist the ex-
isting learning algorithms in accelerating their convergence. Simulations
performed on two data sets show that the proposed method outperforms,
in terms of convergence speed, the Levenberg-Marquardt algorithm.

1 Introduction

The error back-propagation method has been greatly used for the supervised
training of feedforward neural networks. However, as it is well-known, this
method has a slow convergence. Several techniques have been developed to
speed up this method, such as, among others, second order algorithms [2, 5],
adaptive step size methods [1, 12, 13], appropriate weights initialization [7, 11,
14] and approximate optimization based on heuristic least squares application
[3, 14]. These latter methods are based on measuring the error of the network
before the output nonlinear functions and on the backbackpropagation of the

This work is partially supported by NSF grant ECS-9900394 and the Xunta de Galicia
(project PGIDT-01PXI10503PR).

∗Corresponding author. Email: oscarfon@mail2.udc.es

W 1 , b1 W 2 , b2

f1

f2

ε
=

d
-

y

ε
=

d
-

z

Least squares

Standard learning rule

x

+

+

+

+

+

...

......

Figure 1: Two-layer neural network and scheme of the proposed hybrid method.

error through the layers. These works employ heuristic approaches that do not
consider the scaling effects of the nonlinear function’s slope.

In this work, a hybrid algorithm for the supervised learning of feedforward
neural networks is presented. This method is different from the previous least
squares approaches in two aspects: 1) new theoretical results are presented
that enhance the previous studies that are based on heuristic assumptions, and
2) the linear least squares is not employed for all the layers of the network
but only for the last layer. The aim of the proposed method is to assist the
current algorithms in order to accelerate their convergence. This is achieved
by learning optimally the last layer weights of the network using linear least
squares. The proposed algorithm is described for a two-layer neural network,
although, it can be easily generalized for n layers. Although the simulations
presented in this work use the Levenberg-Marquardt algorithm, the proposed
method is appropriate for speeding up the convergence of any of the current
algorithms.

2 Proposed learning method

Consider the neural network in figure 1, that is composed of two layers of
weights (W1 and W2) and biases (b1 and b2), where the variables y and z
represent the outputs of the network after and before the nonlinearity of the last
layer (f2). The variable d represents the desired response of the network. In this
work, we consider a supervised learning (the assumed cost function is the mean
square error), thus, we can compute the error (ε) between the actual output (y)
and the desired response (d), i.e., ε = d− y. The standard methods employed
to train neural networks usually use some first and second order information, in
the optimization rule, to update both layers. In this way, the learning method
modifies, at the same time, the basis functions (W1) of the network and the
projections (W2). However, in this paper we propose an alternative training
method, illustrated in figure 1, that uses two different learning methods to

update the weights: (a) one of the standard learning methods, for the first
layer, and (b) linear least squares, for the last layer. This approach is based
on the results presented in [6] and in the following lemma (the proof is not
included due to space restrictions):

Lemma 1 Let x be the input of a one-layer neural network, d,y be the desired
and actual outputs, W, b be the weights, and f , f−1, f ′ be the nonlinear func-
tion, its inverse and its derivative. Then the following equivalence holds up to
the first order of the Taylor series expansion:

min
W,b

E[(d− y)T (d− y)] ≈ min
W,b

E[(f ′(d̄). ∗ ε̄)T (f ′(d̄). ∗ ε̄)] (1)

where ’.∗’ denotes the element-wise product, ε̄ = d̄−(Wx + b) and d̄ = f−1(d).

It is clear that if we use the alternative cost function on the right hand side
of (1) the weights of the network do not appear inside the nonlinear function.
Therefore, it is possible to train optimally a one-layer neural network with non-
linear neural functions employing linear least squares. The optimal weights can
be obtained taking the derivatives of this alternative cost function with respect
to the weights of the system. This optimization problem is solved using a linear
system of equations. Another advantage is that the learning is independent
of the transfer functions employed in the output layer of the network. This
result is used to learn the weights of the last layer in the two-layer neural
network presented in figure 1. For a given value of W1 we can carry out a
one-step exact minimization with respect to W2 using least squares, in which
W1 is held fixed. Every time the value of W1 is changed the weights W2 are
recomputed. An evident advantage of this method is that the dimensionality
of the effective search space for the non-linear algorithm is reduced, and we
might hope that this would reduce the number of training iterations which is
required to find a good solution. In this case, the x parameters (inputs of the
one-layer network) are replaced by the output of the first layer. In summary,
the proposed algorithm is as follows:

1. Select W1, b1, W2 and b2 randomly or using an initialization method.

2. Update the weights and the biases employing any standard optimization
rule (e.g., Levenberg-Marquardt, conjugate gradient).

3. Evaluate the stopping rule. If it is not satisfied, then go to step 4; other-
wise, the training is finished.

4. Compute the value of the cost function in this iteration (J(n)). If |J(n)−
J(n− 1)| < λ (where λ is a fixed threshold) then go to step 5; otherwise,
go back to step 2.

5. Update W1, b1 using the standard optimization rule and W2, b2 using
least squares:

• W1(n+1) = W1(n)+∆W1(n+1); b1(n+1) = b1(n)+∆b1(n+1).

• W2(n + 1) and b2(n + 1) are obtained using linear least squares.

6. Evaluate the stopping rule. If not satisfied, go back to step 5; otherwise,
go back to step 2.

In the first stage of the method (first epochs of training), both layers of
the network are updated using a standard learning rule. In the second stage,
when the error obtained by the network remains flat over iterations, the update
procedure switches to the hybrid approach (step 5). Then, W2 of the network
is optimally obtained using linear least squares while W1 is still updated using
the standard learning method. The proposed algorithm was presented using
a switching criterion (step 4) based on the difference between the current and
the previous error, however, a different criterion could also be employed; for
example, switching at a predetermined epoch of training.

3 Simulations

In this section, we present a comparative study between the proposed method
and the Levenberg-Marquard (LM) algorithm [8]. We used the LM algorithm as
a standard for comparison, because it is considered as one of the fastest methods
for training moderate-size feedforward neural networks. In all the simulations
we have used µ = 0.01 as the initial step size, and logistic and linear functions
in the processing elements (PEs) of the hidden and output layer, respectively.
The stopping rule employed in steps 3 and 6 of the proposed algorithm was
that the algorithm achieves a µ value greater than a maximum value (1× 104)
or a maximum number of epochs of training (different for each data set).

To make the comparative study, we employed two different nonlinear system
identification data sets: the Dow-Jones-closing-index series [9] (1000 samples)
and the Mackey-Glass time series [10] (2000 samples). The desired output was
normalized in all the cases in the interval [0.1, 0.9] and the employed topol-
ogy was 3-6-1 and 5-7-1 for Dow-Jones and Mackay-Glass data, respectively.
For all the data sets a Monte Carlo simulation, using 100 different initial ran-
dom weights sets, were carried out. In all the simulations the initial weights
employed by both algorithms (LM and the proposed method) were the same,
therefore they start at identical initial conditions. The results of these simula-
tions are shown in figures 2 and 3. Figures 2(a) and 2(b) presents the learning
curves of the Monte Carlo simulations for the LM and the proposed method,
respectively, using the Dow-Jones data. These figures show that the proposed
method gives a better convergence rate compared to the standard LM algo-
rithm. Moreover, we carried out the same simulations (with the same initial
conditions) but using logistic functions in the output layer of the network. This
setup (sigmoid outputs and sum-squared loss) is not desirable because it is well
known that produces a worse convergence for regression problems [4]. How-
ever, we did these simulations to compare the performance of the proposed
algorithm. Figures 2(c) and 2(d) show the results for LM and the presented
method, respectively. As it can be observed, the proposed method is able to

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

Epoch

MS
E

Levenberg−Marquardt

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

Epoch

MS
E

Proposed method

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

Epoch

MS
E

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

Epoch

MS
E

(a) (b)

(c) (d)

Figure 2: Dow-Jones data: learning curves (MSE for the training set) for linear
outputs, (a) and (b), and for logistic outputs, (c) and (d).

0 20 40 60
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Epoch

MSE

0 20 40 60
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Epoch

MSE

(a) (b)

Figure 3: Results for the Mackey-Glass data: (a) LM and (b) LM + Least-
squares.

overcome the problem of the poor convergence when a sigmoid outputs and
sum-squared loss setup is used. Therefore, the convergence properties are in-
dependent of the activation functions used in the output layer. This is an
additional advantage of the proposed algorithm. Figure 3 shows the learning
curves for the Mackey-Glass data set. Again, the proposed method (figure
3(b)) achieved a faster convergence than the regular LM (figure 3(a)).

4 Conclusion

In this work, a new method to assist the supervised learning of feedforward
neural networks to reduce their convergence time has been presented. The
proposed approach combines the power of the standard methods (e.g., LM,
conjugate gradient, etc.) to learn the weights of the first layer and the linear
least squares method to obtain the weights of the second layer. The perfor-
mance of the method was tested experimentally using two data sets. The sim-
ulations showed that it clearly outperforms the regular Levenberg-Marquardt
algorithm, in terms of convergence time needed to achieve an optimum.

References

[1] L. B. Almeida, T. Langlois, J. D. Amaral, and A. Plakhov. Parameter
adaptation in stochastic optimization, chapter 6, pages 111–134. Cam-
bridge University Press, 1999.

[2] R. Battiti. First and second order methods for learning: Between steepest
descent and newton’s method. Neural Computation, 4(2):141–166, 1992.

[3] F. Biegler-Konig and F. Barnmann. A learning algorithm for multilayered
neural networks based on linear least squares problems. Neural Networks,
6:127–131, 1993.

[4] C.M. Bishop. Neural Networks for Pattern Recognition. Oxford University
Press, New York, 1995.

[5] W. L. Buntine and A. S. Weigend. Computing second derivatives in feed-
forward networks: A review. IEEE Trans. on Neural Networks, 5(3):480–
488, 1993.

[6] E. Castillo, O. Fontenla-Romero, A. Alonso-Betanzos, and B. Guijarro-
Berdiñas. A global optimum approach for one-layer neural networks. Neu-
ral Computation, 14(6):1429–1449, 2002.

[7] G.P. Drago and S. Ridella. Statistically controlled activation weight ini-
tialization (SCAWI). IEEE Trans. on Neural Networks, 3:899–905, 1992.

[8] M. T. Hagan and M. Menhaj. Training feedforward networks with the
marquardt algorithm. IEEE Trans. on Neural Networks, 5(6):989–993,
1994.

[9] E. Ley. On the peculiar distribution of the US stock indices first digits.
The American Statistician, 50(4):311–314, 1996.

[10] M.C. Mackey and L. Glass. Oscillation and chaos is physiological control
systems. Science, 197:287–289, 1977.

[11] D. Nguyen and B. Widrow. Improving the learning speed of 2-layer neural
networks by choosing initial values of the adaptive weights. Proc. of the
Int. Joint Conference on Neural Networks, 3:21–26, 1990.

[12] Genevieve B. Orr and Todd K. Leen. Using curvature information for
fast stochastic search. In M.I. Jordan, M.C. Mozer, and T. Petsche, ed-
itors, Neural Information Processing Systems, volume 9, pages 606–612,
Cambridge, 1996. MIT Press.

[13] Nicol N. Schraudolph. Fast curvature matrix-vector products for second
order gradient descent. Neural Computation, 14(7):1723–1738, 2002.

[14] Y.F. Yam and T.W.S Chow. A new method in determining the initial
weights of feedforward neural networks. Neurocomputing, 16(1):23–32,
1997.

