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ABSTRACT

The underdetermined Blind Source Separation (BSS) prob-
lem consist of estimating n sources from the measurements
provided by m < n sensors. In the noise-free linear model,
the measurements are a linear combination of the sources,
so that the mixing process is represented by a rectangular
mixing matrix of m rows and n columns. The solution pro-
cess can be decomposed in two stages: first estimate the
mixing matrix from the measurements, and then estimate
the “best” solution compatible with the underdetermined
set of linear equations. Most of the results presented for
the underdetermined BSS problem are based on geometric
ideas valid for the m = 2 scenario. In this paper we extend
these ideas to higher dimensions, and develop techniques to
both estimate the mixing matrix and to invert the under-
determined linear problem that are valid for an arbitrary
number of sources and measurements, provided 1 < m < n.

1. INTRODUCTION

Blind source separation (BSS) is concerned with the prob-
lem of estimating n source signals from the measurements
provided by m sensors. The measurements are generated as
a mixture of the original sources, and “blind” adjective in-
dicates that neither the sources nor the mixing process are
known. Many models of the mixing process can be consid-
ered, such as instantaneous, delayed or convolved sources;
noisy or noise-free mixing; and the relative number of sen-
sors and sources. In this paper we focus on the noise-free
linear model, in which n sources are linearly combined,
through an unknown mixing matrix, in order to provide
m measurements.

As = x, (1)

where s ∈ R
n is the source random vector, x ∈ R

m is the
measurement random vector, and A ∈ R

m×n is the un-
known mixing matrix. The square case, with as many sen-
sors as sources (m = n), has been extensively studied in the
literature [1, 2]. The algorithms designed for this case usu-
ally exploit the assumed independence of the sources, and
the problem reduces to estimate A, since once the mixing
matrix is known, the sources can be readily obtained by
applying the inverse of A to the measurements, as (1) indi-
cates. The overdetermined case, with more measurements
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than sources (m > n) can also be readily solved. Since now
there are more linear equations than sources, the problem
will not have in general an exact solution. There exist how-
ever a canonical procedure to find the solution that mini-
mizes the L2-norm of the error: estimate A and apply its
pseudo-inverse [3] to the measurements in order to estimate
the sources.

In this paper we are interested in the underdetermined
case, in which the number of available sensors is smaller
than the number of sources to estimate (m < n). In this
case the solution of the BSS problem can also be formu-
lated as a two-stage procedure: first estimate the mixing
matrix A and then estimate the sources [4, 5]. The pseudo-
inverse provides the solution that minimizes the L2-norm.
Observe that there is a clear difference between the solution
provided by the pseudo-inverse in the overdetermined and
underdetermined cases: in the first it provides the estima-
tion of the sources that minimizes the error; in the second
it provides the compatible solution with minimum norm.
Nonetheless, in the underdetermined BSS case we are faced
with an inescapable fact: since we have less sensors than
sources, some information is lost and the separation proce-
dure can not be perfect in general. This loss of information
can be readily understood from a geometrical point of view.
The mixing process consists on a linear transform of the
sources from the linear space R

n into the lower-dimension
linear space R

m, so that a kind of projection has been per-
formed, and the separation process consists on estimating
the source vectors from the projections.

A well-known fact of the underdetermined BSS prob-
lem is that the performance of the separation algorithms
improve, both for the estimation of the mixing matrix [6]
and for the estimation of the sources [7], as the sparsity of
the sources is higher. When the sources are not sparse in
the original domain, a suitable linear transform, like Dis-
crete Cosine Transform (DCT), short-time Fourier Trans-
form (STFT), and wavelets [8], can be performed so that
the coefficients that represent the signal in the new domain
are indeed sparse.

To parametrically model sources with different degrees
of sparsity, the following model for the source densities is
used

pSj (sj) = pj δ(sj) + (1 − pj)fSj (sj), j = 1, . . . , n, (2)

where sj is the j-th source, pj is the sparsity factor for
sj , and fSj (sj) is the PDF when the source j—that is as-



sumed to be zero-mean—is active. The performance of this
two-stage procedure strongly depends on the sparsity of the
sources, both for the estimation of the mixing matrix [6]
and for the estimation of the sources [7]: the higher the
sparsity factor—the lower the probability of sources being
active simultaneously—the better the estimation of mixing
matrix and the recovery of the sources.

Most of the results on underdetermined BSS [7, 8] con-
sider the case with two sensors (m = 2), in which the mixing
matrix can be obtained, from a geometrical point of view
[9], by finding the maxima of a unidimensional probability
density function (PDF). However, the direct extension of
this method to scenarios with more than two sensors re-
quires finding the maxima of a multidimensional PDF [10],
that, in addition to be computationally more complex, re-
quires a number of samples that depends exponentially on
the number of dimensions. In the usual m = 2 underdeter-
mined scenario it is also customary to improve the results
provided by pseudo-inverse when the sparsity of the sources
is high by relying on heuristic criteria that have a clear ge-
ometrical interpretation on the basis of regions defined by
the columns of the mixing matrix [8]. However, the ex-
tension of this criteria to higher dimensions it is also not
obvious.

In this paper, we extend our previous work on underde-
termined BSS [4] to deal with an arbitrary number of sen-
sors (more than one) and an arbitrary number of sources.
We present extensions for the two stages of the separation
process: the estimation of the mixing matrix and the es-
timation of the sources. For the first stage, the basic pro-
cedure is to parametrically describe the mixing matrix in
generalized spherical coordinates, to project onto the plane
associated to each one of the coordinated angles, to esti-
mate the maxima of the m − 1 unidimensional PDFs, and
to select from all the possible combinations of angles those
that really correspond to the columns of the mixing ma-
trix. For the second stage, the generalization covers two
aspects: on the one hand, for the heuristic approach, we
extend the concept of angle bisector, that is appropriate
for every combination of two vectors in the plane for the
m = 2 scenario, to an m-dimensional Delaunay tessellation
that is appropriate for an arbitrary high number of dimen-
sions. On the other hand, we propose maximum likelihood
(ML) and maximum a posteriori (MAP) estimators valid
for an arbitrary number of dimensions.

The organization of the paper is as follows: In Section
2, we formulate the problem of estimating the mixing ma-
trix as the problem of finding the maxima of an (m − 1)-
dimensional PDF. In Section 2.1, we introduce the projec-
tion procedure that reduces the peak estimation problem
from a multidimensional PDF to m − 1 decoupled unidi-
mensional PDFs, and show how to elucidate the spurious
combinations of peaks from those that are true maxima of
the (m − 1)-dimensional PDF. In Section 3 we derive both
heuristic and probabilistic estimators to perform the inver-
sion of the matrix in an arbitrary number of dimensions.
In Section 4, we validate the proposed method with a se-
ries of Montecarlo simulations. In Section 5 we present the
conclusions of this work.

2. ESTIMATION OF THE MIXING MATRIX

Equation (1) can be interpreted from a geometrical point
of view as the projection of the source vectors s from R

n

into the vector space R
m of the measurement vectors x. If

we denote by aj the j-th column of the mixing matrix, so
that A = [a1,a2, · · · ,an], (1) can be rewritten as

x =
n∑

j=1

sjaj = s1a1 + · · · + snan, (3)

that explicitly shows that the measurement vector is a linear
combination of the columns of the mixing matrix. Accord-
ing to this interpretation, if at a given time only the j-th
source is non-zero, the measurement vector will be collinear
with aj . When more than one source is active at the same
time, the measurement will be a linear combination of the
corresponding columns of the mixing matrix. For higher
sparsity factors, the measurements are more concentrated
along the directions of the columns of the mixing matrix
[4].

The first step in our recovery procedure is to convert all
the points of the m-dimensional vector space of the mea-
surements and the columns of the mixing matrix from a
Cartesian representation to a spherical coordinate system,
where every point x of Cartesian coordinates (x1, . . . , xm)
is represented by its modulus r and by m − 1 angles θi as

x1 = r cos θm−1 cos θm−2 · · · cos θ3 cos θ2 cos θ1,

x2 = r cos θm−1 cos θm−2 · · · cos θ3 cos θ2 sin θ1,

x3 = r cos θm−1 cos θm−2 · · · cos θ3 sin θ2,

...

xm−1 = r cos θm−1 sin θm−2,

xm = r sin θm−1.

According to this definition, the angles can be determined
from the rectangular coordinates as

θi = arctan
xi+1√∑i

l=1 x2
l

, i = 1, . . . , m − 1. (4)

If we apply (4) to the measurements of an scenario with
three sensors (m = 3) and four sources (n = 4) of sparsity
factor 0.5, and represent an histogram taking as indepen-
dent variables the m−1 angles, we obtain the results shown
in Figure 1.

2.1. Dimension Reduction by projection

In Figure 1 it can be observed that the (m−1)-dimensional
PDF is composed of a set of n peaks that, even for an
sparsity factor of 0.5, are quite narrow. In Figure 2, a
top view of the (m − 1)- dimensional PDF is shown. The
black spots correspond to the locations of the maxima from
Figure 1.

Since we are interested in determining only the posi-
tion of the peaks, and not the shape of the PDF, all the
information we are looking for can be extracted from the
m − 1 projections onto the unidimensional vector spaces
corresponding to conserving only one spherical coordinate
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Figure 1: Histogram of angles for the measurements of a sce-
nario with three sensors (m = 3) and four sources (n = 4)
of sparsity factor 0.5. The (m − 1)-unidimensional projec-
tions onto the plane of angle θi, i = 1, . . . , m − 1 are also
shown.

and making zero all the other angles. These projections are
shown in Figure 1 for the case of three sensors and four
sources, which we are using as an example. They can be
considered as the set of m − 1 unidimensional PDFs of the
m−1 spherical angles that are shown as projections in Fig-
ure 1.

To each of these m− 1 unidimensional PDFs of the an-
gles that parameterize the measurements, a method has to
be applied to find up to n maxima, whose locations corre-
spond to the estimates θ̂ij , i = 1, . . . , m−1, j = 1, . . . , n. A
number of methods could be applied, from the simpler one
of calculating the histogram and finding the maxima, to the
use of nonparametric estimation by means of Parzen win-
dowing [6], or to the use of spectral estimation techniques
suitable for the estimation of sinusoids in noise [11].

Once the estimations of the individual spherical angles
are obtained, it is necesary to reconstruct the position of
the maxima of the multidimensional PDF from the uni-
dimensional projections. From these projections, all the
combinations of angles could be constructed, as it is shown
with dotted lines in Figure 2, and a method has to be imple-
mented that allows to distinguish the correct combinations
from the spurious solutions. We define a small area around
each combination of angles, that constitutes a tentative so-
lution, and count how many measurements fall into that
area. The correct combinations will have a high number of
occurrences, but a point falling into the region associated to
a spurious combination will be an improbable event. Since
the number of combinations of angles is nm−1, the pro-
cedure to elucidate which are the correct combinations of
angles is to construct an (m − 1)-dimensional count array
of length n in each of the dimensions and find the maxima
for each intersection of the m − 1 dimensions.
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Figure 2: Top view of the (m − 1)-dimensional PDF corre-
sponding to the spherical angles of the measurements. The
black spots correspond to the locations of the maxima from
Figure 1.

3. INVERSION OF THE LINEAR PROBLEM

The problem of estimating s from equation (1) when the
mixing matrix A —which is assumed to be full rank— and
x are known depends of the relation between m and n.
If m = n the problem is trivial, because the solution is
given by s = A−1x. In the overdetermined case (m > n),
the pseudo inverse [12] A+ provides the solution s = A+x
that minimizes the L2 norm of the residue, ||x − As||. In
the underdetermined case (m < n) the problem (1) has
an infinite number of solutions, so it is necessary to impose
some aditional criterion to select one solution vector s. One
possible criterion of general applicability could be to impose
some norm Lp of the solution to be a minimum. Specifically,
the solution provided by the pseudo inverse is the one that
minimices the L2 norm of the solution ||s||, and with no
additional knowledge of the statistics of the sources could
be the canonical option to choose [3]. As we will show next,
if the signals admit a sparse representation, it is possible to
design better inversion strategies.

3.1. Heuristic approaches

If, for a given sample of the source vector s, only the j-th
component is not null, the measurement x will be collinear
with the j-th column of the matrix A and the components
of the source vector will be

sk =
aT

j x

aT
j aj

δk
j , k = 1, . . . , n, (5)

where the superscript T denotes transpose, and δk
j is the

Kronecker delta. In a real situation, even with highly sparse
sources, the signals will rarely be exactly zero, but at each
sample there will be some probability of one of the sources
being significatively bigger than the others. To estimate
which one that component is, we could choose the one that
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Figure 3: Division of the three-dimensional space into dis-
joint regions by a Delaunay tessellation for a scenario with
m = 3 measurements and n = 5 sources.

maximizes the normalized projection on to the directions of
each column of A.

Another family of methods could be based on building
at each time step a reduced square matrix Ar ∈ R

m×m us-
ing m vectors of R

m, chosen between the n column vectors
aj according to some optimization criterion. The result-
ing source vector s will have n − m zeros corresponding to
the non-selected columns, and the other components will
be given by A−1

r x. There are many ways of selecting the
appropiate columns of the reduced matrix. In [8] a method
of this family is proposed for the m = 2 case. The criterion
it uses is to divide R

2 into the sectors defined by the column
vectors aj and to choose at each sample those two vectos
that surround the measurement x.

When the number of measurements is greater than two,
we are faced with the problem of dividing an m-dimensional
space into regions delimitated by m vectors. A generaliza-
tion of the division based on sectors, that has been succes-
fully applied for the scenario with m = 2 [8], could be to use
a Delaunay tessellation. In figure 3 we show a tessellation
for a scenario with three measurements and five sources.
Each vector corresponds to a column of the mixing matrix
or its opposite. As it can be readily observed, the Delau-
nay tessellation divides the three dimensional measurement
space into regions so that an unique set of three vectors can
be used to build a reduced inversion matrix depending on
the region associated to each individual measurement.

3.2. ML and MAP estimation

According to (3), if at any given time, we knew that at
most m components of the signal are non zero, the prob-
lem would not be underdetermined any more and we could
invert it (provided that we know which are the non zero
components). The first step is to build all the possible re-
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Figure 4: Bidimensional PDF of a reduced mixing ma-
trix for an scenario with m = 2 measurements and n = 3
sources.

duced matrices, taking m from the n columns of the mixing
matrix A, and calculate the PDF associated to the linear
combinations of sources through each of those reduced ma-
trices. In this way we obtain

(
n
m

)
m-dimensional PDFs that

allow us to evaluate the likelihood of a given measurement
in the m-dimensional space. In figure 4 we show an example
for the PDF associated to the combination of two columns
of the mixing matrix. It can be observed that the shape is
an ellipsoid, which main axes could be computed by means
of the eigenvectors AAT .

The ML approach to estimate the n sources would con-
sist on associating a given measurement to the reduced ma-
trix that maximizes the likelihood, and invert s according
to the inverse of the choosen reduced mixing matrix. If
the sparsity factor of the sources is known beforehand, we
can calculate the a priori probabilities of the different com-
binations of sources, so that the MAP estimator could be
formulated [7].

This ML and MAP estimation can be considered as a
classification problem: given a measurement, which is the
most probable mixing matrix that produced it? If we esti-
mate that the most probable is a reduced mixing matrix, we
apply its inverse. If we estimate that the most probable is
the complete mixing matrix A, we apply its pseudo-inverse.
Figures 5 and 6 illustrate this classification problem for a
scenario with three sources and two measurements, for spar-
sity factors of p = 0.5 and p = 0.8, respectivelly. Since we
have m = 2 and n = 3, a total of 3 bidimensional re-
duced matrices is available, that, in addition to the class
corresponding to the complete mixing matrix A amounts
to four different regions in the bidimensional measurement
space. In both figures, the dark grey region that is divided
into six different subregions is associated with the pseudo
inverse. The other three regions, each one with two oppo-
sited subregions, correspond to each reduced mixing matrix.
The directions of the columns of the mixing matrix mark
the the discontinuities between regions near the origin. By
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Figure 5: Classification regions of the bidimensional mea-
surement space for a scenario with m = 2 and n = 3 and
sparsity factor p = 0.5.

comparing these figures, some insight can be obtained: on
the one hand, as the sparsity factor grows, the number of
measurements that should be inverted by the pseudo in-
verse decreases (since is less probable that more than m
sources are active at the same time). On the other hand,
as the sparsity factor grows, the boundaries of the regions
tend from being dictated by the bisector (the main eigen-
vector of AAT ) to being dictated by the directions of the
columns of the mixing matrix (which is a justification to
the heuristic approach suggested above).

4. NUMERICAL RESULTS

We have performed simulations to validate both stages of
the inversion process: matrix estimation and inversion of
the underdetermined linear problem.

To characterize the performance of our matrix estima-
tion method, Montecarlo simulations have been performed
to estimate the mixing matrix from scenarios with different
numbers of sources and sensors. In all the cases, the source
realizations have been generated according to the model in
(2), using as fSj (sj), j = 1, . . . , m, Gaussian densities with
zero mean and unit variance. The simulations have been
performed as follows: for each scenario, twenty thousand
samples of sources with sparsity factors from 0.05 to 0.95
have been produced. For each scenario and sparsity factor,
four hundred mixing matrices have been randomly gener-
ated, the spherical angles have been estimated from the
unidimensional projected PDFs, and the criterion to select
the correct combination of angles has been applied. The
different scenarios considered are those associated with a
number of sensors ranging from two to five, and a number
of sources ranging from one to ten. As the figure of merit we
have selected the number of errors in the estimation of the
angles (defining a tolerance on the basis of the bin length
used on the histograms). We define the mean error rate
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Figure 6: Classification regions of the bidimensional mea-
surement space for a scenario with m = 2 and n = 3 and
sparsity factor p = 0.8.

as the mean number of errors for all the mixing matrices
divided by the total number of angles to estimate. Figure 7
shows the results from scenarios with five sensors (m = 5)
and a number of sources from six to twelve (6 ≤ n ≤ 12)
for all the sparsity factors considered. It can be observed
that the number of errors grows with the number of sources
(more peaks have to be estimated from the same data, and
the mean distance between peaks decreases), and dimin-
ish with the sparsity factor (the measurements tend to be
more concentrated along the columns of the mixing matrix,
reducing the spreading that confuses the estimation).

To characterize the performance of the inversion crite-
ria, a scenario with three measurements and five sources
has been simulated by using one hundred random matrices.
Figure 8 shows the signal to noise ratio (SNR) on the esti-
mation of the sources as a function of the sparsity factor for
three different criteria: pseudo-inverse, ML, and MAP es-
timators. It can be observed that nothing outperforms the
pseudo-inverse when the sparsity factor is very low (since
the most probable situation is that all the sources are active
at the same time), but, as the sparsity factor grows, the ML
and MAP estimators both outperform the pseudo inverse.

5. CONCLUSIONS

In this paper we have presented methods for underdeter-
mined BSS problems that allow to both estimate the mix-
ing matrix and invert the underdetermined linear problem
in an arbitrary number of dimensions. For the first stage
of estimating the mixing matrix, the approach is based on
parameterizing both the measurements and the columns of
the mixing matrix in spherical coordinates and on estimat-
ing the peaks of the multidimensional PDF associated with
the angles of the measurements. Since the estimation of
multidimensional PDFs is a complex problem, we propose
to project onto as many unidimensional PDFs as the num-
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Figure 7: Mean error rate for scenarios with a fixed number
of five sensors and a number of sources ranging from six to
twelve, as a function of the sparsity factor of the sources.

ber of spherical angles (the number of sensors minus one).
For the second stage of inverting the underdetermined lin-
ear problem, we have presented both a heuristic approach
in which the classification is performed by means of a m-
dimensional Delaunay tessellation, and obtained ML and
MAP estimators. The Montecarlo simulations have shown
that our method provides excellent results for an arbitrary
number of sources and sensors provided that the sparsity
factor is high enough (around 0.75). The intuitive result
that the performance improves with the number of mea-
surements and the sparsity factor, and degrades with the
number of sources has also been corroborated.
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termined blind source separation in a time-varying en-
vironment,” in Proceedings ICASSP-02 (IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing)”, Orlando, FL, May 2002, pp. 3049–3052.

[5] M. Zibulevsky, B. Pearlmutter, P. Bofill, and
P. Kisilev, Independent Components Analysis: Princi-
ples and Practice, chapter Blind source separation by
sparse decomposition in a signal dictionary, Cambridge
University Press, 2000.

0 0.2 0.4 0.6 0.8 1
6

8

10

12

14

16

18

Sparsity factor of the sources, p

SN
R

 (
dB

)

Figure 8: Signal to noise ratio for the estimation of five
sources with three measurements as a function of the spar-
sity factor of the sources. Pseudo-inverse (solid line), ML
estimator (�), and MAP estimator (�).
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