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ABSTRACT 

 
ICA deals with finding linear projections in the input 

space along which the data shows most independence. 
Therefore, mutual information between the projected 
outputs, which are usually called the separated outputs 
due to links with blind source separation (BSS), is 
considered to be a natural criterion for ICA. Minimization 
of the mutual information requires primarily the 
estimation of this quantity from the samples, and then 
adaptation of the separation matrix parameters using a 
suitable optimization approach. In this paper, we present a 
numerical procedure to estimate an upper bound for the 
mutual information based on density estimates motivated 
by Jaynes’ maximum entropy principle. The gradient of 
the mutual information with respect to the adaptive 
parameters, then turns out to be extremely simple.  

  

1. INTRODUCTION 
 

Independent components analysis (ICA) is the 
problem of finding directions in the data space such that 
the independence of the projections is maximized [1]. It is 
a special case of the more general problem of blind source 
separation (BSS), which deals with obtaining estimates of 
the unknown source signals using a number of mixed 
observations, where the mixing process is also unknown 
[2]. In order to be able to solve this problem, some 
assumptions regarding the statistical properties of the 
sources must be made. One commonly used assumption is 
the independence of the original sources. In the 
instantaneous linear mixture case of BSS, which is 
identical to the ICA problem, the relationship between the 
observation vector x and the source vector s is  
  (1) Hsx =
 In this expression, H represents the unknown mixing 
matrix. Limiting ourselves to the square mixture case 
where the number of observations equals the number of 
sources, the square matrix H is assumed to be invertible. 
The separation is achieved by finding a matrix A that 
optimizes some criterion that measures the independence 
of the outputs, which are given by y=Ax. 

 A natural criterion for measuring independence is 
Shannon’s mutual information [3]. For n random variables 
Y1,…,Yn, whose joint pdf is fY(y) and marginal pdfs are 
f1(y1),…, fn(yn), respectively, this mutual information is 
defined as follows [4]. 
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where y=[y1,…,yn]T. Equivalently, Shannon’s mutual 
information can be written in terms of the marginal and 
joint entropies [4]. 
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where Shannon’s entropy is defined as 
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for marginal and joint entropies, respectively. Although 
minimization of the output mutual information is 
considered to be a natural criterion, due to difficulties 
associated with estimating it in a robust manner, two of 
the most popular ICA algorithms, namely Infomax [5] and 
Fast ICA [6] use other criteria. Specifically, Infomax 
maximizes the joint output entropy of the nonlinearly 
transformed data and Fast ICA uses fourth-order statistics. 
 The difficulty in using information theoretic measures 
lies in estimating the density of the underlying data. 
Successful algorithms must use robust probability density 
function (pdf) estimators in order to improve convergence 
to asymptotic performance and to minimize sensitivity to 
outliers. A common approach is polynomial expansions 
[7,8,9]. Truncation of these expansions introduce inherent 
errors in the estimation of the information theoretic 
criteria. Alternative density estimation approaches include 
Parzen windowing [10], and orthonormal basis functions 
[11]. Kernel estimates are used by several researchers in 
ICA [12,13,14]. 
 In this paper, we will undertake the minimum mutual 
information approach in training the whitening-rotation 



topology as previously done by many other researchers 
[7,8,12]. The estimate of mutual information, however, 
will be based on maximum-entropy density estimates 
obtained in accordance with Jaynes’ maximum entropy 
principle [15]. This principle basically states that the 
probability density that best fits the already available 
experimental data, yet that makes minimal commitment 
regarding any unseen measurements should be adopted. 
Therefore, the data density is obtained by solving a 
constrained entropy maximization problem, where the 
constraints guarantee consistency with available data and 
the maximization of entropy (uncertainty) represents the 
minimization of commitment to unseen data.  
 In this approach, since the density estimates will be 
based on the maximum entropy principle, the estimated 
value of the criterion will constitute an upper bound for its 
actual value. Due to this minimization of an upper bound 
(the maximum value) the presented algorithm is, in a 
sense, a minimax approach. Therefore, this criterion and 
the associated learning algorithm will be referred to as 
Minimax ICA. We expect Minimax ICA to exhibit the 
robustness properties of maximum entropy methods. 
 

2. THE TOPOLOGY AND THE OBJECTIVE 
 
The algorithm will use the common whitening-rotation 
scheme in which the separation is performed in two steps. 
The whitening matrix generates unit-variance uncorrelated 
signals, which are then transformed by a coordinate 
rotation in order to maximize independence. Assuming 
the measurements are (made) zero-mean, the whitening 
matrix is determined from the eigendecomposition of the 
measurement covariance matrix. Specifically, W=Λ-1/2 ΦT, 
where Λ is the diagonal eigenvalue matrix and Φ is the 
corresponding orthonormal eigenvector matrix of the 
measurement covariance matrix Σ=E[xxT]. The whitened 
signals are obtained by z=Wx. The coordinate rotation is 
achieved by optimizing an orthonormal matrix R, which is 
parameterized using Givens rotations [16], using the 
mutual information criterion.  
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 The Givens parameterization for a rotation matrix 
involves the multiplication of in-plane rotation matrices as 
shown in (6). Here, the vector  contains the Givens 
angles , i=1,…,n-1 and j=i+1,…,n. Each of the 

matrices  are the so-called in-plane rotations and 

are given by an nxn identity matrix whose four entries are 
modified as follows: (i,i)

Θ

ijθ

ijθ
ijR )( ijθ

th, (i,j)th, (j,i)th, and (j,j)th entries 
are modified to read cos , -sin , sin , and cos , 

respectively. There are a total of n(n-1)/2 Givens angles to 
be optimized. 

ijθ ijθ ijθ

 Considering the mutual information criterion given in 
(2), and noticing that for outputs obtained from y=Rz, the 
joint entropy remains constant for changing rotations, the 
criterion reduces to the sum of marginal output entropies. 
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 The elimination of the requirement for estimating the 
joint entropy is a very significant gain in terms of 
algorithmic robustness, since the estimation of high-
dimensional densities requires an exponentially increasing 
number of samples. 
 

3. THE MAXIMUM ENTROPY PROBLEM 
 

Given a set of samples {x1,…,xN}, the maximum 
entropy density estimate for X can be obtained by solving 
the following constrained optimization problem. 
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where the constraint functions fk(.) are selected a priori by 
the designer and the constants αk are calculated using the 
given samples with sample mean approximation.  
 Using calculus of variations and the Lagrange 
multipliers method, the solution to this constrained 
maximization problem is determined as 
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where  is the Lagrange multiplier 
vector and  is the normalization constant. The 
Lagrange multipliers need to be solved simultaneously 
from the constraints. In the continuous random variable 
case, however, this is not an easy task, since these 
equations involve expectation integrals. Using integration 
by parts, and using the assumption that the actual 
distribution is close to the maximum entropy distribution, 
it is possible to derive a much simpler formula to solve for 
the Lagrange multipliers. Consider 

T
m ][ 1 λλ K=λ

)(λC
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Applying integration by parts with the following 
definitions, 
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where  denotes the derivative of the constraint 
function, and F

(.)kf ′

k(.) denotes its integral, we obtain 
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 It is important that the constraint functions are 
carefully selected such that their analytical integrals are 
known. In addition, if  decays faster than , 
then the first term in (12) goes to zero. This yields 

)(xp X )(xFi
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 Under the assumption that the actual and maximum 
entropy distributions are close to each other (in the sense 
that these expectations are approximately equal) ikβ  can 
be estimated from the samples of X. Finally, defining the 
vector  and the matrix T

m ][ 1 αα K=α ]ik[β=β , the 
Lagrange multipliers are determined by the following 
linear system of equations: . αβλ 1−−=
 

4. MINIMAX ICA LEARNING RULE 
 

The minimax ICA approach is based on minimizing 
the criterion in (7) by adapting the rotation matrix of the 
whitening-rotation scheme described in Section 2. Since 
in this paper, we parameterize the rotation matrix using 
Givens angles, the optimization algorithm will update 
these parameters. If the steepest descent approach is 
employed, the updates become simple. It can easily be 
shown that the derivative of Shannon’s (marginal entropy) 
of a random variable, denoted by , with respect to 
a Givens angle, denoted by , is given by 
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In (14),  is the Lagrange multiplier associated with 
the pdf of the o

oλ
th output signal and  is the ko

kα th constraint 
for the pdf of the oth output. The Lagrange multipliers are 
obtained easily based on the previous discussion. The 
derivative of the constraint constant with respect to the 
Givens angle is determined from the output samples. 
Since by definition 
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where  is the jjoy ,
th sample at the oth output for the 

current angles, the derivative in (14) is 
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In (16), the subscript in  and :oR ( )
:opqθ∂∂R

pq

 denote the 

oth row of the corresponding matrix. The derivative of the 
rotation matrix with respect to  is  θ
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 Once the gradient is constructed from the individual 
derivatives with respect to the Givens angles, these 
parameters can be updated by 
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where η is a small step size. 
 

5. SIMULATIONS 
 
 In this section, we demonstrate the effect of user-
determined parameters on the performance of Minimax 
ICA and present comparisons with benchmark ICA 
algorithms. All algorithms are operated in batch training 
mode in all the simulations. For performance evaluation, 
we will use signal-to-interference ratio (SIR) as the 
measure, which is made possible by the fact that the actual 
mixing matrix H is known in the simulation environment. 
The SIR is defined as [12] 
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where O=RWH. This measure is the average ratio in 
decibels (dB) of the main signal power in each output 
channel to the total power of the interfering signals. 
 In the first set of Monte Carlo simulations, we 
investigate the affect of the number of samples and the 
number of constraints on the performance of Minimax 
ICA. For simplicity, we use a 2x2 instantaneous linear 
mixture case, where the entries of the mixing matrix H is 
selected randomly from a uniform distribution in [-1,1] for 
each one of the 100 runs. The two independent source 
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performance of Minimax ICA can be improved by using 
more constraints. 
 In our second case study, we will conduct Monte 
Carlo simulations to compare the performance of four 
algorithms: Minimax ICA (with the first four moments as 
constraints), Comon’s minimum mutual information 
(MMI) algorithm [7], Fast ICA [6], and Infomax [5]. We 
performed some simulations using Yang’s minimum 
mutual information algorithm [8], however, these 
preliminary results were not comparable to the 
performance of the other algorithms. Therefore, we do not 
present those results here. In each run, N samples of a 
source vector composed of one Gaussian, one Laplacian 
(super-Gaussian), and one uniformly (sub-Gaussian) 
distributed entry were generated. The 3x3 mixing matrix 
H, whose entries are randomly selected from the interval 
[-1,1], is also generated. The mixed signals are then fed 
into the four algorithms (for Fast ICA and Infomax pre-
whitening is applied to speed-up convergence). The 
average SIR of all algorithms obtained over 100 Monte 
Carlo runs are shown in Fig. 2. In these simulations, 
Infomax was not very successful, because generic sigmoid 
nonlinearities were used at its output layer that did not 
match the exact cdfs of the sources. Although the 
performance of Infomax would increase if the 
nonlinearities were matched to the source cdfs, that would 
result in an unfair comparison by providing additional 
information to the algorithm regarding the statistical 
structure of the source signals. 
 Clearly, the results in Fig. 2 demonstrate that for the 
same sample set, Minimax ICA achieves better separation. 
Since these simulations used only 4 moments as 
constraints, it is possible to improve the performance of 
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Figure 1. Average SIR of Minimax ICA versus
number of moment constraints and number of
samples. 
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Figure 2. Average SIR of Minimax ICA, Comon’s
istributions are uniform and Gaussian. For constraint 
unctions, we use fk(x)=xk, which correspond to the 
oments of the random variable X. Repeating these 

xperiments for the number of constraints m=4,5,6,7,8 
nd the number of samples N=100,200,500,750,1000, the 
verage SIR surface shown in Fig. 1 is obtained. As 
xpected, regardless of the number of constraints being 
sed, performance increases with an increasing number of 
amples. On the other hand, for a given number of 
amples, the number of constraints (moments) can be 
ncreased up to a certain point to improve performance. 
fter a critical value we expect the performance to start 
ecreasing due to the fact that higher order moments 
equire higher number of samples for accurate estimation. 
n Fig. 1, for small number of samples, we observe that 
he performance does not increase when the order of 
oments increase. The fluctuations are most likely due to 

he insufficient number of Monte Carlo simulations. If the 
oment order is larger than the number of samples can 

olerate, the performance of the algorithm would degrade. 
his means, as more samples are available, the 

Minimax ICA significantly, especially for large data sets, 
by using additional higher order moments. Hence, the 
average SIR curve for Minimax ICA shown in Fig. 2 
could be regarded as a lower bound for its performance. 
 

6. CONCLUSIONS 
 

 Independent component analysis is a problem where 
information-theoretic optimization criteria finds natural 
application. Minimum output mutual information is one 
such information-theoretic criterion, which has been 
successfully applied in the ICA context. Different 
approaches usually focus on employing various pdf 
estimation techniques, which can then be substituted in 
the mutual information definition to obtain a sample-
estimate for this quantity.  
 In this paper, we have once again exploited this well 
appreciated information-theoretic criterion, along with the 
widely accepted whitening-rotation topology, in order to 
solve the ICA problem. As for the pdf estimation, we have 
utilized the maximum entropy density estimates, whose 
robustness is supported by Jaynes’ principle. We have 



proposed a method for determining the Lagrange 
multipliers of the constrained entropy maximization 
problem, which leads to the aforementioned density 
estimates. Since ICA involves continuous random 
variables (continuous-valued signals), determining these 
parameters is especially difficult due to the reasons 
discussed in the text. The proposed approach for 
determining the Lagrange multipliers numerically is based 
on the assumption that certain moments of the actual 
density and the corresponding maximum entropy density 
are close to each other. The solution then reduces to 
solving a system of linear equations, from which these 
parameters are determined. This assumption, in an ICA 
setting where the signal densities are not extremely spiky 
(like a delta-train), is usually approximately satisfied and 
the density estimates are generally useful. In a setting with 
spiky signal distributions, such as digital communications, 
where the signal values are selected from a finite alphabet, 
the assumption would become invalid. 
 We have demonstrated with Monte Carlo simulations 
that, when the data moments are used as the constraints, 
an increase in the number of constraints (i.e., inclusion of 
higher order moments) produces an increased 
performance (if the data length is sufficient). In addition, 
comparisons with three other benchmark algorithms 
(Comon’s MMI, Fast ICA, and Infomax) indicates that the 
Minimax algorithm performs well. 
 The computational load of Minimax ICA in batch 
mode is slightly higher than the other algorithms 
considered here. To give a rough idea, using the first four 
moments as constraints, one update using Minimax ICA 
requires the evaluation of sample moments of all the 
outputs up to order 8, solving a 4x4 linear system of 
equations, and taking the derivative of all output samples 
with respect to the Givens angles.  
 Minimax ICA, since it is based on Shannon’s 
entropy, does not require adjustments according to the 
sub/super-Gaussianity of the sources. It utilizes the 
presented training data to efficiently extract information 
from the given set. Since the maximum entropy density 
estimate commits minimally to unseen data, Minimax ICA 
has good generalization capabilities (as also demonstrated 
by the SIR measure used as the figure of merit). 
 Future studies will be directed to optimizing the 
constraint functions to maximize performance for a given 
data set. In addition, a low-complexity recursive version 
of Minimax ICA for on-line separation will be pursued. 
 Acknowledgments: This work is partially supported 
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