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Abstract. Estimating the entropy of a sample set is required in solving 
numerous learning scenarios involving information theoretic optimization 
criteria. A number of entropy estimators are available in the literature; 
however, these require a batch of samples to operate on in order to yield an 
estimate. In this paper, we derive a recursive formula to estimate Renyi’s 
quadratic entropy on-line, using each new sample to update the entropy 
estimate to obtain more accurate results in stationary situations or to track 
the changing entropy of a signal in nonstationary situations. 
 
 
INTRODUCTION 

 
Entropy, defined as the average information content of the outcomes of a 

random event, is first introduced by Shannon [1] in the context of digital 
communications. Although Shannon himself did not originally refer to his work as 
information theory, the mathematical elegance of his contribution attracted the 
attention of numerous researchers, which helped build this celebrated theory. The 
implications of information theory are far reaching; it is not merely of interest to 
researchers working on digital communications or to pure mathematicians. In the 
recent decades, information theory has found applications in many different areas 
of science ranging from social sciences to physical sciences and applied sciences, 
including numerous areas of engineering.  

In the last decade, the literature of adaptive systems research has also taken its 
toll from this increased interest on information theory. Successful solutions to 
important practical engineering problems involving the training of adaptive filters 
and neural networks have been developed through the use of information theoretic 
optimization criteria. Blind source separation and blind deconvolution are possibly 
the most frequently studied problems in this regard. Estimating the entropy of a 
signal is essential in determining the solution of many other adaptive learning 
problems as well. The design of information theoretically optimal state estimators 
in control system design [2], information theoretic supervised learning of neural 
networks [3,4], information theoretic subspace projections [5] and feature 
extraction [6,7] are examples of these problems. Information theory plays a role in 
the self-organization of adaptive systems as well, as demonstrated by Linsker [8]. 



We have recently introduced a nonparametric estimator for Renyi’s entropy, 
which is used successfully in the information theoretic training of linear and 
nonlinear adaptive systems [9,10]. The main drawback of (off-line) batch training 
was partially overcome by the introduction of the stochastic information gradient 
[11]. However, as with all stochastic training algorithms, the major problem of this 
latter was the misadjustment in the vicinity of the desired optimal solution. 

Since there is a need to achieve smooth and fast convergence to the optimal 
solution using low-complexity learning rules in on-line adaptation, we desire to 
come up with a recursive entropy estimator. This estimator, possibly using a 
forgetting factor, will preserve some information from the past, while updating the 
entropy estimate based on the newly acquired samples. The gradient of this 
recursive entropy estimator could then be utilized in training adaptive systems on-
line. 

 
 

BATCH QUADRATIC ENTROPY ESTIMATOR 
 
It is possible to derive two different recursive entropy estimators, one for 

stationary environments, one for nonstationary environments. In order to derive 
the entropy recursion for stationary situations and also to form a basis for 
reference, we first present the batch estimator for Renyi’s quadratic entropy. For a 
random variable X with probability distribution function (pdf) fX(.), Renyi’s 
entropy of order-α is defined as [12] 
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Using Parzen windowing with kernel function (.)σκ  to estimate the pdf from its 
samples {x1,…,xN} [13], and approximating the expectation operator with sample 
mean, we obtain the following estimator for Renyi’s entropy [4]. 






























−

−
= ∑ ∑

=

−

=

N

j

N

i
ij xx

N
XH

1

1

1

)(
1

log
1

1
)(ˆ

α

σαα κ
α

  (2) 

Specifically for the choice of α=2, we obtain the quadratic entropy, which is given 
and estimated by 
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The argument of the ‘log’ is named the quadratic information potential due to 
resemblance between this quantity and the physical potential energy of an 
ensemble of particles [14]. Under the entropy-based training rules, the samples 
start behaving similar to physical particles; therefore under the same analogy, they 
were named info rmation particles.  

 
 



EXACT RECURSION FOR QUADRATIC ENTROPY 
 
Investigating the structure of the nonparametric estimator for quadratic 

information potential in (3), we notice that it is possible to obtain a recursive 
formula to update the information potential estimate when a new sample is 
acquired. Suppose that at time k, when we already have k  samples, the quadratic 
information potential is estimated to be (dropping ‘2’ from this point on) 
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Suppose at time k+1 we get a new sample xk+1 and we wish to update our estimate. 
Assuming that the kernel function is selected to be an even-symmetric pdf, 
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Once the information potential estimate is updated, the new entropy estimate can 
be obtained by simply evaluating )(ˆlog)(ˆ

11 XVXH kk ++ −= . Since this recursion 
yields exactly the same estimate as the batch estimator in (3) at every time 
instance, we will call this the exact recursive entropy estimator. This exact 
recursion is useful for estimating the entropy of stationary signals, however, due to 
its increasing memory depth, it is not suitable for nonstationary environments. 
Therefore, we will employ the fixed forgetting factor approach to derive one that 
would serve satisfactorily in such situations. 
 
 
FORGETTING RECURSION FOR QUADRATIC ENTROPY 

 
We start by defining a recursive Parzen window estimate. Suppose that at time 

k , we already have the pdf estimate fk(x) for fX(x). Using the new sample xk+1, we 
update this pdf estimate according to 

)()()1()( 11 ++ −+−= kkk xxxfxf σλκλ   (6) 
The initial pdf estimate could be selected as )()( 11 xxxf −= σκ . Substituting the 
recursive pdf estimate in (6) for the actual pdf in the definition given in (3), we 
obtain the recursion for the quadratic information potential. 
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The recursion in (7) is named as the forgetting recursive entropy estimator. The 
parameters λ, L, and σ are called the forgetting factor, window length, and kernel 
size, respectively. These free design parameters have an effect on the convergence 



properties of this recursive entropy estimator. These will be investigated in the 
following sections. 

An interesting relationship between the exact and forgetting recursive entropy 
estimators of (5) and (7) is that, if we replace the fixed memory depth and the 
fixed window length of (7) with dynamic ones, the two recursions asymptotically 

converge to the same value. In order to see this, we set 22 )1/(1 +−= kkλ  and 
L=k . Then take the limit of the difference between (5) and (7) as k  goes to infinity. 

0

)()(
)1(

2

)0(
)1(

1
)1(ˆ

)1(
lim)ˆ(lim

1
1

1
12

22

2

11 =























−−−
+

+

+
+−−

+
=−

∑∑
=

+
=

+
∞→

++
∞→ k

i
ki

k

i
ik

kk

k
kk

k
xx

k
xx

k

k
VV

k

k

VV

σσ

σ

κ
λ

κ

κλ

  (8) 

The practically important property of this recursive estimator is that it reduces 
the computational complexity from O(N2) to O(L). This is a drastic reduction in 
the computation power requirements. The forgetting recursive entropy estimator 
also enjoys a reduced memory requirement compared to the exact recursion and 
the batch formula. 
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Figure 1. Actual entropy and its exact and forgetting recursive estimates for 

uniform, Laplacian and Gaussian densities. 
 

 
CASE STUDIES 
 

In this section, we investigate the performance of the recursive entropy 
estimators proposed above. We start by demonstrating the convergence properties 

forgetting

exact



of both estimators to the true entropy value of the pdf underlying the data that is 
being presented. In these simulations, we have utilized 5000 samples generated by 
zero-mean, unit-variance uniform, Laplacian, and Gaussian distributions. For these 
density functions, both the exact and forgetting recursions are evaluated over the 
samples. The estimated entropy values using a Gaussian kernel with size 01.0=σ  
as well as the actual entropy of the true pdf of the data are shown in Fig. 1. For the 
forgetting recursion, the forgetting factor is selected to be 0.005 and the window 
length is chosen as 100. 
 In our second set of simulations, we investigate the effect of the forgetting factor 
on the convergence time and the convergence accuracy (variance after 
convergence) of the forgetting estimator in (7). For this purpose, we have utilized 
this recursion on a uniform density for 10000 iterations. Three different values are 
used for the forgetting factor: 0.001, 0.003, and 0.01. The convergence plots of the 
estimates are shown in Fig. 2. Starting from the same initial estimate, the three 
recursions converge after approximately 8000, 2500, and 1000 iterations. As 
expected, the faster the convergence, the larger the estimation variance is. When 
we evaluate the variances of the estimated entropy values over the last 1000 
samples of each convergence curve, we see that larger forgetting factors result in 
larger variance; the variances are respectively, 1.1x10-4, 9.5x10-4, and 2.7x10-3. In 
these runs, we have used L=100 and 01.0=σ . This result conforms to the well-
known general behavior of the forgetting factor in recursive estimates. There is an 
intrinsic trade-off between speed and variance, which the designer must consider 
in selecting the forgetting factor. 
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Figure 2. Comparison of the convergence properties of the forgetting estimator 

for different values of the forgetting factor. 
 

Increasing λ 



Our third set of simulations study the effect of the window length, which 
approximates the expectation operator. For this purpose, we have fixed the 
forgetting factor to 0.002, and the kernel size to 0.01 in (7). Three values of L are 
tried: 10, 100, and 1000. The results of the recursive estimation using these three 
different window lengths are shown in Fig. 3. As expected, the speed of 
convergence is not affected by the variations in this parameter. Only, the 
estimation variance after convergence is greatly affected. Specifically, the variance 
of the estimates for these three cases over the last 1000 iterations of the recursion 
are 6.7x10-3, 7.1x10-4, and 2.2x10-5. This conforms with the general behavior of 
the sample mean approximation for expectation: The more samples used, the 
smaller the variance gets. The trade-off in the selection of this parameter is 
between the accuracy after convergence and the memory requirement. The larger L 
gets, the more storage space is required for holding previous samples in memory; 
on the other hand, estimation variance is decreased. 
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Figure 3. Comparison of the convergence properties of the forgetting estimator for 

different values of the window length. 
 
Our fourth set of simulations investigates the effect of kernel size on the 

variance and bias of the forgetting recursive estimator. As we know, Parzen 
windowing has a bias that increases with larger kernel sizes, whereas its variance 
increases with smaller kernel sizes. In accordance with this property of Parzen 
windowing, we expect our non-parametric estimator to exhibit similar behavior 
under the variations of kernel size. The convergence plots of the recursions for 
various values of the kernel size are shown for a uniformly distributed data set in 
Fig. 4. In all runs, the forgetting factor was fixed to 0.002 and the window length 
was taken as 100. For the Gaussian kernel function with sizes of 0.001, 0.01, 0.1, 
and 1, the bias over the last 1000 samples of the recursions turned out to be 



5.1x10-2, 2.2x10-2, 1.3x10-2, and 2.4x10-1; the variances were also computed and 
found to be 3.9x10-3, 1.6x10-4, 2.9x10-5, and 3.4x10-5. As expected, the smallest 
kernel size resulted in the largest variance and the largest kernel size resulted in 
the largest bias. 
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Figure 4. Comparison of the convergence properties of the forgetting estimator for 

different values of the kernel size. 
 
Our fifth simulation demonstrates the tracking capability of the forgetting 

estimator in (7). For this simulation, we have utilized a forgetting factor of 0.002, a 
window length of 100, and a base kernel size of 0.01. The recursion is initialized 
to the entropy of the kernel function. In order to enhance the differences between 
the entropies of the uniform, Laplacian, and Gaussian pdfs, we have scaled their 
standard deviations by the coefficients 1, 5, and 0.2 respectively. In estimating the 
entropy of a scaled sample sequence using the presented estimators, it is also 
necessary to scale up or down the kernel size according to the standard deviation 
of the samples [15]. The base kernel size is selected to suit a unit-variance data 
pdf. Since, in general, the variance of the data pdf is unknown, we employ a 
recursive estimator to estimate this parameter as well. 

2
1 )var()1()var( kkk xxx λλ +−=+

  (9) 

This recursive variance estimator assumes the same forgetting factor value of 
0.002. The algorithm is presented with a sequence of 30000 random samples 
generated by zero-mean uniform, Laplacian, and Gaussian distributions with 
standard deviations 10, 1, and 30 respectively. For a comparison, we also present 
the entropy tracking results where these actual scale factors are utilized to scale 
up/down the kernel size at the instants of switching between pdfs. The initial scale 
factor estimate in (9), i.e. the estimate of the standard deviation of the pdf 

Increasing σ 



underlying the samples, is set to 1. We observe from Fig. 5 that even though the 
scale estimates are not initially accurate, the entropy estimates converge towards 
the actual entropy value and as soon as the scale factor estimate converges, the 
difference between the two entropy estimates that use the estimated and actual 
values of the scale factors drop back to a negligible level. 
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Figure 5. Comparison of entropy estimates using the actual and estimated values of 
the scale factor a) entropy estimate using the estimated scale factor b) scale factor 
estimate c) entropy estimate using the actual scale factor d) difference between the 

two entropy estimates using the actual and estimated values of the scale factor. 
 
 

CONCLUSIONS 
 
Estimating the entropy of a sample sequence or a signal has numerous practical 

applications in signal processing and adaptive system training. We have previously 
introduced a robust and data-efficient estimator for Renyi’s entropy, which proved 
to result in superior learning algorithms in terms of convergence speed and data 
efficiency in solving problems such as blind source separation, blind 
deconvolution and other supervised and unsupervised training applications. In this 
paper, we have targeted the major drawback of batch computation requirement that 
this entropy estimator enforced. We have derived two recursive formulations to 
extend the estimation flexibility of our nonparametric Renyi’s entropy estimator. 
These two recursions, named exact recursive entropy estimator and forgetting 
recursive entropy estimator, allow on-line treatment of the entropy of signals for 
computationally simple and fast manipulation of the adaptive system parameters. 
The drastic reduction from O(N2), where N is the batch size, to O(L), where L is 
the window length, in computational complexity, makes the forgetting recursive 

(a) (b) 

(c) (d) 



entropy estimator attractive for use in on-line information theoretic learning 
scenarios, where an entropy-based cost function is to be optimized. 

We have investigated the convergence properties of these recursive estimators in 
simulations and studied the effect of design parameters, namely the forgetting 
factor, the window length, and the kernel size, on the convergence speed and final 
estimation variance through simulations. The results were in accordance with our 
expectations. In short, increased forgetting factor resulted in faster convergence 
and larger variance, increased window length resulted in smaller variance and had 
no effect on convergence time, and finally, increased kernel size resulted in 
smaller variance and larger estimation bias. 
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