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Abstract. Hebbian learning is one of the mainstays of biologically inspired 
neural processing. Hebb’s rule is biologically plausible, and it has been 
extensively utilized in both computational neuroscience and in unsupervised 
training of neural systems. In these fields, Hebbian learning became 
synonymous for correlation learning. But it is known that correlation is a 
second order statistic of the data, so it is sub-optimal when the goal is to 
extract as much information as possible from the sensory data stream. In this 
paper, we demonstrate how information learning can be implemented using 
Hebb’s rule. Thus the paper brings a new understanding to how neural 
systems could, through Hebb’s rule, extract information theoretic quantities 
rather than merely correlation. 
 
 
INTRODUCTION 

 
Hebb’s rule states: “When an axon of cell A is near enough to excite cell B or 

repeatedly or consistently takes part in firing it, some growth or metabolic change 
takes place in one or both cells such that A’s efficiency, as one of the cells firing 
B, is increased” [1]. This principle has been translated in the neural networks 
literature as: In Hebbian learning, the weight connecting a neuron to another is 
incremented proportional to the product of the input to the neuron and its output 
[2]. This formulation then can be shown to maximize the correlation between the 
input and the output of the neuron whose weights are updated through the use of 
Widrow’s stochastic gradient on a correlation-based cost function [2,3]. 
Correlation has been declared the basis of learning, and Hebb’s law has mostly 
shaped our understanding of the operation of the brain and the process of learning. 
However, we know that correlation describes simple second order statistics of the 
data, and as such it is sub-optimal when the goal is to process information. Our 
brains must exploit much more than simply correlation from the neural activity in 
order to achieve their level of performance in information processing. From an 
abstract perspective, the learning-from-examples scenario starts with a data set, 
which globally conveys information about a real world event, and the goal is to 
capture the information in the weights of a learning machine. Information Theory 
(IT) should be the mathematical infrastructure used to quantify this change in state 
because it is the best possible approach to deal with manipulation of information 
[4]. Shannon, in a 1948 classical paper, laid down the foundations of IT [5]. IT has 
had a tremendous impact in the design of efficient and reliable communication 



systems [6,7] because it is able to answer two key questions: what is the best 
possible (minimal) code for our data, and what is the maximal amount of 
information which can be transferred through a particular channel. In spite of its 
practical origins, IT is a deep mathematical theory concerned with the very essence 
of the communication process. IT has also impacted statistical mechanics by 
providing a clearer understanding of the nature of entropy, as was illustrated by 
Jaynes [8].  

Due to the emphasis on principles, information theory has also played a role in 
explaining biological information processing. Barlow enunciated the principle of 
redundancy reduction [9] building on earlier work of Attneave on visual 
perception [10] and utilized it to train (unsupervised learning) the weights of a 
linear neural network. He also proposed factorial or minimum entropy coding [11]. 
The development of sparse codes has been recently advanced by many researchers 
[12,13]. Atick [14] and Atick and Redlich [15] demonstrated that feature 
extraction could be accomplished from noisy inputs by maximizing mutual 
information between the input and the output, which is a form of redundancy 
reduction. The recent interest in sparse representations has been triggered by 
Fields [16], and a subsequent paper in Nature, which demonstrated emergence of 
simple cell receptive fields when learning a sparse code for natural images [13].  

Probably the most insightful application of information theory to brain theory is 
Linsker’s principle of maximum information preservation, also called the Infomax 
principle [17]. Linsker enunciated a self-organizing principle for neuronal 
assemblies based on the simple idea that the role of a neuronal assembly is to 
transfer to its output as much information as possible about its input. He 
formulated this principle in analogy to the channel capacity theorem as the 
maximization of the mutual information between the input and output. This is a 
profound idea that shines new light on the organizational principles of the brain.  

One of the difficulties of all these studies is that there is an abyss between the 
sophisticated computation required to estimate Shannon’s entropy and mutual 
information and the reality of the local computation of the Hebbian synapse. We 
will show in this paper, however, that if a kernel-based nonparametric estimator 
for Shannon’s entropy is utilized, then the Hebbian synapse can in fact estimate 
entropy over time instead of simply estimating correlation. We also demonstrate 
that the same goal could also be reached through the unconventional Renyi’s 
entropy. 

The structure of this paper is the following. First we briefly explain and provide 
references of our nonparametric approach to estimate entropy directly from 
samples for both Shannon’s and Renyi’s entropy definitions. Then we derive the 
stochastic information gradient (SIG) to adapt the parameters of a linear, or 
nonlinear system, to maximize or minimize entropy [18]. While exploring the 
mathematical properties of the SIG algorithm, we will establish the similarity 
between a special case of the SIG algorithm and Hebbian and anti-Hebbian terms, 
which raised the question of whether information processing is possible through 
Hebbian learning. Finally we present a simple example to demonstrate the 
convergence of the algorithm to the desired solutions. 

 



 
SIG ALGORITHM FOR ADALINE 

 
In order to arrive at the SIG algorithm, we start with the derivation of the 

nonparametric entropy estimator that employs Parzen windowing. First consider 
Shannon’s entropy, which is given by 
    (1) )](log[)( yfEyH yyS −=

Suppose we utilize the stochastic value of this quantity at time k, such that the 
expectation is dropped and the argument of this operation is evaluated at the most 
recent sample. 
    (2) )(log)( kyS yfyH −≈

Since in practice the analytical pdf of the random variable y is not available, we 
employ the nonparametric Parzen window estimator over the last L samples of the 
signal [21]. 
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Assuming that the samples of y are generated by an ADALINE structure, i.e. 
, where  is the input vector and w is the weight vector, the stochastic 

gradient estimate for Shannon’s entropy is found as (in terms of a column vector) 
k
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This expression is called the stochastic information gradient (SIG) [18]. SIG can 
also be derived using Renyi’s entropy, a parametric family of functions. For a 
random variable y it is defined as [19] 
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We named the argument of the log in (5) as the information potential, not 
arbitrarily, but because it shares the properties of physical potential fields, when 
the formulation is complete [20].  The expectation in the information potential 
could be dropped to obtain a stochastic estimate of this quantity. Notice that 
minimization or maximization of entropy is equivalent to minimization or 
maximization of the information potential, depending on the value of α. Using 
Parzen windowing over the last L samples, at time k, we obtain the stochastic 
quantity 
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Then, for an ADALINE, the stochastic gradient of Renyi’s entropy becomes 
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which is identical to (3). In (3) and (7), (.)σκ  is called the kernel function of 
Parzen windowing, usually selected to be a symmetric, continuous and 
differentiable pdf, whose width is determined by the parameter σ.  In [22], we 
have established the link between the kernel function and the convolution 
smoothing for global optimization, and we also demonstrated the link between the 
minimum error-entropy (MEE) criterion and minimum mean-square-error 
(MMSE) criterion in supervised learning.   

Note that, when maximizing or minimizing the output entropy of ADALINE, 
just like in Oja’s rule [23], we would need to normalize the weights to keep them 
from growing without bound or decaying to zero.  

Alternative SIG expressions for Shannon’s and Renyi’s definitions of entropy 
could also be obtained by simply utilizing a single sample from the past in the 
Parzen pdf estimate and using the window of L samples to approximate the 
expectation value operator with a sample mean. As a result, assuming an 
ADALINE structure, we obtain the following alternative SIG expressions for 
Shannon’s and Renyi’s entropies, respectively. 
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SIG given in (3) is, in effect, very similar to Widrow’s stochastic gradient in 
LMS; we assume only the instantaneous increment in the output samples, i.e. 

, is available at the k1−− kk yy th iteration of adaptation. Moreover, it is trivial to see 
that the expected value of this gradient is the actual gradient of the Shannon’s 
entropy for the output pdf estimated with Parzen windowing. For a small kernel 
size and a large number of samples, this estimate is very close to the true pdf. An 
interesting special case of (3), (8), and (9) is for L=1. 
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The convergence properties of this algorithm for entropy minimization was studied 
in detail in [24]. Extensions to differentiable (with respect to their weights) 
nonlinear systems are also possible [18]. 

 
 



RELATIONSHIP BETWEEN SIG AND HEBB’S RULE 
 
In general, we prefer using differentiable and symmetric kernels in Parzen 

windowing; differentiability is required to guarantee proper evaluation of the 
gradient in adaptation, and symmetry is preferred to prevent biasing the mean of 
the estimated pdf.  Suppose Gaussian kernels are employed. In that case, σ 
naturally becomes the standard deviation of the kernel, and we have the following. 
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Substituting (11) in (10), we obtain the explicit expression 
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We clearly see from (12) that employing Hebbian and anti-Hebbian terms 
involving the two most recent values of the input and the output results in a 
stochastic estimate of the information gradient. When interpreted under the 
viewpoint of classical Hebbian learning, (12) states that it is possible to maximize 
the entropy by applying the Hebbian rule to the instantaneous increments in the 
input and the output signals. Thus, the neuron implements information learning 
rather than merely implementing correlation learning. 

Now, consider the general case where any differentiable symmetric kernel 
function may be used in Parzen windowing.  Since only the Gaussian distribution 
satisfies the differential equation in (11), it is the only kernel choice that results in 
this special case given by (12), which reduces to a learning algorithm that is 
Hebbian (on the increments) in the classical sense. In general, since we use 
symmetric and differentiable kernels that are pdfs themselves, we get the 
following update rule 

 )()()(
11 −− −⋅−=

∂
∂

kkkk
k xxyyf

w
yHα  (13) 

where , and satisfies the condition )(/)()( xxxf σσ κκ ′−= )())(( xsignxfsign = . Thus, 
the update amount that would be applied to the weight vector is still in the same 
direction as would be in the classical Hebbian learning; however, it is scaled 
nonlinearly depending on the value of the increment that occurred in the output of 
the neuron. This is in fact consistent with Hebb’s principle, and is a good example 
that demonstrates the product of the output and the input signals is not the only 
possibility for the weight update to implement Hebb’s principle. 

 
 
CASE STUDIES 
 

In this section, we present two case studies in which an ADALINE is trained to 
yield maximum entropy at the output subject to the unit-norm constraint on the 
weight vector. The weights are updated using SIG. In both examples, training is 
carried out using two different kernel function choices: Gaussian and Cauchy. 
Explicitly, these kernel functions are given by 
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The weights are normalized to unit-length after each update, and the information 
about the previous output values are modified using this normalized weight vector. 
In the first example, 100 samples from a 2-dimensional joint Gaussian distribution 
are generated and the ADALINE is trained to maximize the entropy at the output. 
The step sizes are chosen as 10-5, and 10-3, for Gaussian and Cauchy kernels, 
respectively, and both kernel sizes are chosen as 0.1. Fig. 1a shows the samples 
and the directions deduced.  Fig. 1b shows the convergence of the weight vector 
angle to the ideal solution, which corresponds to the 1st principal component in this 
case, where the data distribution is Gaussian [20]. The choice of kernel size and 
step size are important issues that affect convergence time and misadjustment.   
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Figure 1: a) Data samples and the derived directions b) Convergence of the angles 
 

In the second example 50 samples of a 2-dimensional random vector are 
generated such that the x-coordinate is uniform, y-coordinate is Gaussian, and the 
(sample) covariance matrix is identity. In this case, PCA is unable to deduce any 
maximal variance direction since the variance along each direction is the same. On 
the other hand, using the maximum (minimum) entropy approach, we can extract 
the direction along which the data exhibits the most (least) uncertainty. Fig. 2a 
shows the estimated entropy vs. direction of weight vector for both kernels, and 
Fig. 2b shows the convergence of weights from 5 different initial conditions. 
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Figure 2: a) Entropy vs. direction b) Convergence from different initial conditions 

 



We remark that, in this example, as the number of samples increases, the 
estimated distributions will converge to the actual distributions (for small kernel 
sizes), which are between uniform and Gaussian. Hence, the asymptotically ideal 
solution for the angle will be 2/π , since the Gaussian distribution has the largest 
entropy among distributions of fixed variance [7]. 

The third case study we present here is a Monte Carlo analysis of the 
misadjustment of the stochastic gradient given in (12). In each run of this analysis, 
we use 10000 samples from a 2-dimensional jointly Gaussian random vector, as 
was done in the first example. The eigenspread (λmax/λmin) of the covariance matrix 
is one of the controlled variables. The kernel size σ is scaled up or down with the 
standard deviation of the maximum entropy projection (this could be estimated 
from the samples) as 0maxσλσ = , where σ0 is a base-value for the kernel 
function selected for unit-variance samples. This latter variable is also part of the 
controlled parameters of the Monte Carlo simulations. Specifically, we control the 
ratio , where η is the learning rate of the steepest ascent algorithm. 2

0/ση

We perform these series of Monte Carlo simulations varying  from 102
0/ση -3 to 

10-2 and varying minmax / λλ  from 2 to 10. For each pairwise combination of 
these parameters, 10 experiments were performed, starting from random initial 
conditions and using the last 3000 samples to compute the MSE between the 
estimated maximum entropy direction and the actual solution found using the 
unbiased sample covariance estimate for the whole 10000-sample training set. The 
MSE values obtained over the 10 runs are then averaged to produce the results 
summary depicted in Fig. 3. These results are presented in terms of root-mean-
square (RMS) values of the error (in degrees) between the estimated direction and 
the true direction (notice the log-scale of the RMS axes in all three subplots). Both 
cross-section plots and the 2-argument 1-output mesh plot of the RMS Error 
versus learning rate and eigenspread are provided for convenience. 
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Figure 3: a) RMS Error (in degrees) versus  for different eigenspread values 2
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b) RMS Error (in degrees) versus minmax / λλ  for different learning rates 

c) RMS Error (in degrees) versus  and 2
0/ση minmax / λλ  

 



From the results shown in Fig. 3, we observe that the misadjustment increases as 
the learning rate increases and as the eigenspread decreases, as expected. The 
affect of learning rate is intuitively obvious from our knowledge on the effect of 
step size on the misadjustment of the well-known LMS algorithm. The intuition 
behind the observed effect of the eigenspread is that with increasing eigenspread, 
the entropy of the projection to the desired direction increases causing the 
differences between consecutive samples of the input vector and the output value 
to become larger, thus emphasizing the distinction between the maximum-entropy 
direction and all the other directions. Therefore, it becomes easier for the 
algorithm to determine and converge to the optimal solution sought. 

 
 

CONCLUSIONS 
 
In this paper we presented a nonparametric entropy estimator, whose stochastic 

gradient led to a local, sample-wise expression that involves the product of a 
nonlinear function of the differences between consecutive output samples and the 
difference between the corresponding input samples. The derived stochastic 
entropy gradient expressions (all three of them) can be utilized in the information 
theoretic solution of many engineering problems where training of adaptive 
systems according to information theoretic criteria is required. These stochastic 
information gradient (SIG) expressions allow the designer to manipulate the 
information at the output of a learning system on a sample-by-sample basis; 
therefore, they are extremely useful for fast, on-line information theoretic 
learning. 

For the special case of single-sample windows, this stochastic gradient defaulted 
to a combination of Hebbian and anti-Hebbian learning, among pairs of 
consecutive samples, acting on their instantaneous value increments in value 
instead of their instantaneous values, as in the classical sense. We have 
investigated the ability of this simplified SIG algorithm to determine maximum-
entropy directions in different sets of random variables and demonstrated that it 
successfully forces the linear adaptive system to converge to the desired solution. 
A Monte Carlo analysis of the effects of the learning rate and the eigenspread of 
the data on the misadjustment of the algorithm in determining the maximum-
entropy direction was also conducted. This analysis verified the expectation that 
the misadjustment increases with increasing learning rate and decreasing 
eigenspread. 

There are two main conclusions from this study that we would like to address. 
This relationship between entropy and Hebbian update principle encourages us to 
study the realism of this learning model in neuronal interactions in the brain; 
experiments could be set up to see if, in fact, synaptic strength is only dependent 
upon the level of excitability of the neuron or if, as the formula predicts, the 
efficacy of the synapse is also modulated by the action potential’s intervals (verbal 
communication with several neuroscience experts revealed the possibility of a 
similar process in neuron synapses). If our prediction is correct, then we have a 
very gratifying result that increases even further our admiration for biological 



processes. In fact, Hebbian learning could adapt the synapses with information 
gradients, and therefore neural assemblies will manipulate entropy, which from the 
point of information processing provides all that can be known about the data 
streams. 

The second conclusion concerns the machine learning community. Even if our 
predictions for computational neuroscience are incorrect, Renyi’s entropy 
estimator is a viable alternative to help us leave the “local minima” created by 
second order methods so pervasive in both adaptive filter theory and artificial 
neural network cost functions. SIG clearly shows that Hebbian type rules are 
estimating far more than second order statistics. It is quite extraordinary that 
interactions between consecutive samples are able to estimate higher order 
statistics. Upon employing our nonparametric estimator for entropy and seeking an 
on-line implementation, we began to realize how powerful local computation in 
space-time can really be. As a result, it is imperative that researchers move to a 
different paradigm, where Hebbian learning is no longer a synonym of correlation 
learning. 

Finally, we would like to address the issue of applicability of the presented 
relationship to the field of information theoretic learning. In general, mutual 
information, not entropy alone, is employed as the adaptation criterion as it is scale 
invariant and exhibits other desirable properties. It is easy to write mutual 
information in terms of marginal and joint entropies of the signals involved, 
therefore a link between mutual information and Hebbian learning might as well 
be established following this lead. On the other hand, there are applications where 
a modified entropy criterion might be useful, such as blind deconvolution. By 
adding the log of the variance of the signal to its entropy, a scale invariant 
objective function could be constructed, which would exhibit Hebbian update rules 
for both entropy and the variance terms in the stochastic updates. In summary, 
there is still much to be researched about the links between information extraction 
in biological adaptive systems and their application to learning engineering 
systems. 
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