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Abstract: This paper addresses the problem of modeling and controlling non-linear plants 
by utilizing a self-organizing map (SOM). The proposed method uses multiple models of 
the non-linear plant for identification, as well as a multi-model controller. The 
mathematical formulation of the controller algorithm and the switching strategy are 
discussed. Simulation and experimental studies are included for a variety of non-linear 
systems to demonstrate the performance of the proposed strategy. Copyright © Controlo 
2002 
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1. INTRODUCTION 
�

It has been widely believed that most of the 
dynamical systems we encounter in practice exhibit 
non-linear behavior. The linearization of these non-
linear systems is done based on the assumption that 
the plant normally operates near the equilibrium. But 
in many practical cases the system may be required 
to operate in the state space where the linear 
approximations are no longer valid. This gave rise to 
the notion of using multiple models to represent the 
system dynamics over the entire operating regime. 
System identification using multiple model method 
has received considerable attention in recent years 
due to its divide and conquer approach. In this 
approach, a set of models is designed to represent the 
possible system behavior. 
The concept of multiple models and switching 
between the models has been an area of interest in 
Control Theory. Multiple Kalman filter-based models 
(Lainiotis, 1976) were studied in the past to improve 
the accuracy in state estimation and control problems. 
In recent years (Narendra et al, 1997, 1997, 1995) 
multiple models using neural networks have been 
used with switching between the models. Principe 
(Principe et al, 1998) have successfully modeled a 
chaotic time series using multiple models and applied 
it to the set point regulation of a NASA Langley wind 

tunnel during the aerodynamic testing of model 
aircraft (Motter, 1997). Inspired by this approach, we 
propose a method using self-organizing map (SOM) 
(Kohonen, 1995) to identify the plant at different 
segments of the state space trajectory, giving rise to 
the concept of multiple models structured by an SOM. 
Here the global dynamics is approximated by a preset 
number of local linear models, which are concurrently 
derived through competition using Kohonen’s self-
organizing map (SOM). The local models are derived 
from the weights of the SOM. At any time instant, the 
model representing the plant dynamics is chosen by 
the SOM depending on the state of the system. 
Tracking based on inverse control constitutes one of 
the active areas of research in control theory. The 
basic objective of adaptive inverse control is to 
determine the control input such that the system 
output follows a specified trajectory. Since we 
identify the plant using multiple models, it is 
necessary to associate these models with a 
corresponding controller. How we do this in the 
presence of non-linearity poses a challenge that will 
be addressed in this paper. �
�

2. PROBLEM STATEMENT 
�

Consider a dynamical system represented by the state 
equation  
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where the vector  denotes the delayed input 

sequence, and the 
vector is the delayed output sequence, 

with 

, where  can 
be any non-linear function. Qualitatively, the 
objective of the inverse control problem is to 
determine an input control law u  such that the 
output  behaves in some desired fashion. As 
seen, the design of the controller has two phases: first 
the identification of the plant dynamics and second is 
the determination of the appropriate control action 
needed to meet the overall specifications. If is 
unknown and we have only the input-output data, 
then it is an adaptive control problem. Assuming that 
the plant is BIBO stable, it can be identified first and 
then the controller can be designed, although in the 
strict sense, the adaptive control problem is one in 
which the identification and control are carried out 
simultaneously. Designing the controller for the 
system described by (1) is difficult even when is a 
known non-linear system. When is unknown, the 
task is to approximate so as to design the 
controller. There are two alternative approaches for 
this; one is to approximate  by a single non-linear 

model , which is called the global modeling, the 
most common being the polynomial fitting of the 
trajectory. Neural networks can be successfully 
applied to this problem due to their universal 
mapping capability (Haykin, 1994). An alternative 
approach is to divide the state space into local 
regions and model individually the local dynamics in 
each region, i.e., to decompose  into a family of 

models  with r , each fitting only the 
neighbors of the present point in the reconstruction 
space. So the overall model is a concatenation of 
local maps (Principe et al, 1998). 
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Each local model  can be potentially simpler, even 
linear, but the parameters will be changing across the 
state space. The identification step is carried out by 
the SOM, which will provide a codebook 
representation of the plant dynamics and organizes 
the different dynamic regimes in topological 
neighborhoods. The development of local models 
based on SOM is elaborated next. 
 

3. DYNAMICAL MODELING USING SOM 
 
Since the training of the static SOM is well known 
we do not elaborate the manner in which an SOM is 
trained (Kohonen, 1995, Haykin, 1994). The steps to 
develop the local linear models based on the SOM 
has three steps: 

1) Reconstruction of the state space from the 
input signal (embedding) 

2) Training of the SOM 
3) Estimation of the local linear models  

So the first step is to create an embedding of the input 
as well as the output time series, the embedding 
dimension is determined by the order of the system. 
According to Takens’ Embedding theorem, the 
dimension , where 12 �� DN D  is the dimension of 
the attractor.  This delayed input and output time 
series is fed to the SOM and the SOM is trained. Next 
step is to utilize the SOM for dynamical modeling 
harnessing its power for data representation, space 
discretization and topological preservation (Principe 
et al, 1998).  The local linear models can be derived 
from the trained SOM by creating an extra layer of 
linear PEs (Processing Elements) for each of the SOM 
PEs. Thus the thr  SOM PE has an associated linear 
model , which represents the linear approximation 
to the local dynamics. 
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Where )(nu  is the overall SOM input, 

Tnnn )]( )([)( yuu �  which is nothing but the 
concatenated version of the delayed inputs and 
outputs. The parameter vector a can be estimated by 
least squares (LS) algorithm using the points in the 
local region. The procedure for building the local 
models is as follows: 

r

1) From input-output data, form a codebook of pairs 
 )]}(),([),1({ nnny yu�

2) Select pairs from the codebook within a 
neighborhood of size ( 2 , where 

is the number of inputs being fed to the SOM) 
centered at the current winning PE. 

LN �� NNL

N

3) Fit the local model to the 
selected pairs in the codebook 
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4) Apply the local models to obtain 
 ))(),((ˆ)1(ˆ nnfny r yu��

In short the local dynamic model works as follows: 
the current input Tnnn )]( )([)( yuu � is placed at the 
input of the SOM and the winner-take-all operation 
will select the PE that best represents the current 
input. This winner activates a single linear PE that 
contains the weights of the local linear model and 
estimates the response of the system for this input as 

 )( )1(ˆ nany T
rr u�� . The simulation results given in 

the next section describe how accurately this group of 
linear models emulates the actual system dynamics. 
 
 

4. CASE STUDIES-DYNAMICAL MODELING 
 
The idea presented above on local modelling is best 
illustrated by considering specific examples. Here we 
consider three examples in which a non-linear 
dynamical system is represented by SOM based local 
models. The output obtained from the models is 

     



compared with the actual plant output and is plotted 
with the identification error. 
 
4.1 Example 1 
 
In this example a piecewise linear but globally non-
linear system is taken. Local linear models are 
derived for this system described by, 
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where,  denote the coefficients of the weight 
vector for the r

rr aa 10 ,
th  model and represent the 

actual system output and input respectively at the k
)(),( kuky

th 

time instant. In order to test these models, we will 
give a step input as shown in figure 2(a) with varying 
amplitude levels thus making the plant switch 
regimes. The output from the models is shown in 
figure 2(b), which clearly follows the actual trajectory 
of the plant thereby proving the veracity of the use of 
multiple models for system identification. 

Note that this system is non-invertible. We used a 
SOM of 7x7 to solve this problem. Figure 1. shows 
the actual response of the system along with the 
response of the SOM based multiple models.  
 

     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here an input of magnitude less than one is applied to 
the system and the SOM will select the winner that 
best represents the input, which in turn selects the 
local model. Observe that although the system in the 
range  is not linear, the SOM switches 
between the corresponding models based on the 
input. 
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4.2 Example 2 
 
We will now consider a linear system with varying 
coefficients. The system is described by 
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zH , which is a first order linear system 

with coefficients a and b  that vary according to the 
input magnitude, i.e., 
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We assume that the input to the system ranges 
between –1 and 1 and we know in advance the order 
of the system though the parameters are unknown. A 
SOM of size 22x22 is trained with values uniformly 
distributed in [  for both dimensions. So each 
weight vector has two elements, one corresponding to 
the present value of the input and other for the 

previous value of the plant output. As discussed in the 
previous section, the modeling is carried out using 
least square fit and we obtain 484 models for the plant 
over the whole dynamic range. So the models are 
described by the equations 
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4.3 Example 3 
 
We will now take a non-linear system described by 
the equation, 
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where L is the normalization constant set to 6.03. We 
will again use a 22x22 SOM. The system is fed with a 
random input. The system response is plotted along 
with the model response in figure 3. As can be seen 
the models predict the system output pretty well. 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 1. Actual and identified response of example 1 .8
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Figure 2. (a) Step input for the plant (b) Response of the plant 
and the model output  
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5. DESIGN OF SWITCHING CONTROLLERS 
 
The general architecture for the control of a plant 
using multiple models is shown in figure 4. The 
unknown system to be controlled is SISO and has 
input and output . As stated in section 2 our 
principal objective is to determine a control input 

, which will result in the output  of the 

plant in (1) tracking a specified sequence  with 
sufficient accuracy (Widrow, 1996). The system has 

identification models denoted by � � , in 
parallel. Corresponding to each model , a 
controller  is designed such that C achieves the 
control objective for M . So at every instant one of 
the models is selected by the SOM as discussed in the 
previous section, and the corresponding controller is 
used to control the actual system. This is the 
switching part of the system. We will be mainly 
concerned with the issues of learning a controller 
from a multiple model paradigm, using gradient 
descent learning. This means that the output plant 
error must be propagated through the multiple 
models to adapt the parameters of the controller. 
Since the multiple models are structured by the SOM, 
we have to derive the dual of the SOM for sensitivity 
propagation.  Since the SOM input/output map is a 
discontinuous process, it may appear that it is 
impossible to obtain its dual system. Albeit strictly 
speaking this seems true, practically it is possible to 
transfer sensitivities through a SOM,  
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provided sample-by-sample estimates are used like in 
the LMS algorithm. In the LMS we will be 
propagating instantaneous errors and so the algorithm 
will not see the discontinuities. With this background, 
we can approach the design of the controller in two 
ways. 
 
1. Assign one controller for each of the models and 

design them independent of the others. This is 
possible because there is a model corresponding 
to each piecewise linear region of the state-space. 

2. Assign a controller for a group of models, i.e., 
one controller being able to control a cluster of 
models, which is similar to robust control design. 

  

Here, we design the controller using the first method, 
i.e., one controller per model. To design C , the 
linear model  is taken and the controller is 
designed adaptively using LMS algorithm (Haykin, 
1994, Widrow 1985). Since the models are linear, the 
controller is also linear. The block diagram associated 
with the design of the controller is shown in the figure 
5. Let the desired output be and the controller 
weight vector be . Then the controller output 

is given by, 
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where Tnyndn )]1( )([)( ��d , the overall controller 
input. 
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Figure 4.  General architecture for multiple controllers 

 



 
 
 
 
 
 
 
 
 
 
 
 
The corresponding SOM output is the winner PE 
weight, , which is applied to the model  
(with parameter vector ) to get a response 

. The controller weight vector is adapted 
using simple LMS rule, which utilizes the 
instantaneous gradient. The instantaneous gradient is 
defined as 

)(* nw

)

iM

ia
1(ˆ �ny

)(
2
1)( 2 nenJ �                                                         (9)  

So the weight vector update equation is 
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We can compute this gradient by using chain rule.  
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The adaptation process is repeated for all the models 
resulting in a model controller pair {  
associated with every SOM PE. As mentioned before 
the natural way to decide when and to which 
controller one should switch is to determine the 
model that best describes the plant. This will be 
decided by SOM in accordance with the present state 
of the system.  In a nutshell, the procedure for 
controlling the non-linear plant is as follows: The 
present state of the system [  is applied to 
the SOM to get the winning PE. Now this PE will 
give the associated local model representing the 
present dynamics of the system and will fire the 
corresponding controller. The controller output is 
then fed to the actual system, which is forced to track 
the reference trajectory. As can be expected an error 
in the identification will lead to an error in the 
control. 
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6. CASE STUDIES-CONTROLLER 
 d(n) 

The proposed strategy for controller design through 
local modeling is tested for the examples we used in 
section 4.  

Controller  
Ci 

Model 
Mi 

 e(n)
TDL

6.1 Example 1 TDL 
 
Consider the non-linear system described by (4). 
Controllers are designed for every model as described 
in the previous section. The whole system with the 
multiple controllers is evaluated in a trajectory-
tracking problem. Figure 6 shows the desired 
trajectory and the system output. Note that the system 
output tracks the trajectory with almost zero error and 
this clearly indicates that the controllers are switching 
accurately. 

plant 
y(n)u(n) 

    Figure 5.  Single controller design 
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Figure 6. Trajectory tracking for example 6.1 

It can be concluded from this example that though the 
design of controller design for this non-invertible 
system may seen to be an impossible task, it is 
possible to design the inverse if one knows at which 
particular part of the space the system is operating. 
This is possible due to the local nature of the models 
describing the plant. 
  
6.2 Example 2 
 
Consider the first order linear plant described by (5). 
Here our objective is to study how the different 
models perform in a control context. The system is 
fed with many different test signals and the system is 
found to track them pretty well, proving the multiple 
controller’s ability to track the dynamics of the plant. 
Figure 7 shows the plots for trajectory tracking. 
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      Figure 7. Trajectory tracking for example 6.2 

 
6.3 Example 3 
 
We will finally consider the non-linear system given 
by (7). The previous examples showed piece-wise 
linear plant dynamics. However, the plant in (7) is 
inherently non-linear. Again, the controllers are 
designed for every local linear model and the plant is 
tested with various trajectories. Figure 8 shows the 

     



plots of the trajectory tracking. It is obvious that the 
multiple model-based controllers do well even when 
the system is completely non-linear. 
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6. CONCLUSIONS 

 
Modeling of non-linear systems has a variety of 
applications. In this paper we considered the non-
linear system modeling in the control problem 
scenario. A global or a set of local models can be 
used to identify the non-linear system. In this paper 
the modeling is based on SOM which works not only 
as an enhanced clustering algorithm preserving the 
neighborhoods of the reconstruction space dynamics, 
but also as an identifier of the local dynamics. The 
SOM is trained globally to cluster the dynamics. The 
discontinuities that one may encounter across the 
boundaries are minimized due to the inherent nature 
of least squares we used in the derivation of local 
models. This approach of utilizing SOM for non-
linear system identification is relevant for designing 
controllers. The models turn out to be really simple in 
structure and so are the controllers. The method is 
tested for a variety of control problem yielding 
satisfactory performance.  As an added advantage 
this method can be used to identify the unstable 
modes of a system. Work in this regard is still under 
progress. 
In this paper we used a switching strategy depending 
on the values of the inputs to the SOM or the present 
state of the system. Instead what we can do is to 
evaluate a performance index and switch the models 
accordingly to this index. The quantization error that 
is inherent in SOM will introduce some error in the 
identification step.  This will give rise to an 
additional error in the controller design. We can 
estimate an upper bound on this quantization error, 
and can determine the maximum control error. 
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