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Abstract: In this paper, we describe the use of Luenberger state estimators for general 
nonlinear, time-varying systems. Since, in general, it is difficult to determine globally 
stable pre-specified observer gains for nonlinear systems, we propose using an adaptive 
observer gain vector that will allow learning of stable values throughout the state 
estimation process. To this end, we will derive a stochastic gradient adaptation algorithm 
for the observer gains based on the mean-square error of the estimated outputs. The 
performance of the adaptive observer scheme will be tested on linear and non-linear 
systems, including the chaotic Lorenz attractor.  Copyright © Controlo 2002 
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1. INTRODUCTION 

 

Following the celebrated theory of Kalman and the 
associated Kalman filter, and inspired by the 
concepts laid by Luenberger on the design of linear 
observers (state estimators), there have been some 
work on the design of stable observer schemes for 
general nonlinear and time-varying systems (Elmas 
and Zelaya de la Parra,1996;Du et al., 1995). These 
extensions, under the influence of the classical 
observer design theory, were focused on analytical 
design techniques of the nonlinear observer. The 
main approach followed in this line of practice is to 
choose the observer gains such that the overall 
linearized error dynamics matrix consisting of the 
gain vector and the Jacobians of the state dynamics 
and the output mapping has stable eigenvalues over a 
closed subset of the state-space. Under these 
conditions and for state trajectories that remain in this 
subset at all times, convergence could be proven 
(Elmas and Zelaya de la Parra,1996;Du et al., 1995). 
This procedure of analytical extended Luenberger 
observer (ELO) design has been applied successfully 
to realistic nonlinear system models (Elmas and 
Zelaya de la Parra,1996;Du et al., 1995;Orlowska-
Kowalska, 1989;Song et al., 2000;Du and Brdys, 
1993). The same approach has also been utilized in 

designing nonlinear state feedback stabilizers for 
nonlinear systems (Rodrigues-Millan et al., 
1997;Delepaut et al., 1989). In contrast to this 
classical approach of tackling the observer design 
problem analytically, we introduce the adaptive 
system approach, where the observer gains are 
continuously learned throughout the process of state 
estimation. 
 
The organization of this paper is as follows. In Sec. 2, 
we present the structure of the extended Luenberger 
observer for nonlinear and time-varying systems. In 
Sec. 3, we describe the stochastic gradient algorithm 
for the adaptation of the observer gains on a sample-
by-sample basis. Finally in Sec. 4, we study the 
performance of the proposed adaptive Luenberger 
observer scheme on a variety of dynamical systems. 
 
 

2. EXTENDED LUENBERGER OBSERVER 
 
For linear time-invariant (LTI) systems described by 
the dynamic equations 
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where xk is the state vector, uk is the input vector and 
yk is the output vector, the Luenberger observer, 
provided that the pair (A,C) is observable, is given by 
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The global asymptotic stability of the observer can be 
guaranteed by setting the gain vector L to a value 
such that the state estimation error dynamics defined 
by 
 )~)(()~( 11 kkkk xxLCAxx −−=− ++    (3) 
has stable eigenvalues (Kailath, 1980). 
 
The extension of the Luenberger observer to 
nonlinear systems is straightforward. Given a 
nonlinear dynamical system, possibly time-varying, 
defined by the equations 
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the extended Luenberger observer is  characterized 
by the dynamic equations 
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Although there is a solid theory behind the linear 
Luenberger observer in (2) and there are simple and 
rigorous analytical methods for selecting the observer 
gain vector L, such results are not yet available for 
the extended version in (5), yet. However, in the next 
section, we will demonstrate an approach to 
overcome this difficulty by letting L adapt on-line 
during the course of estimation. 
 
 

3. STOCHASTIC MSE GRADIENT TO ADAPT 
THE OBSERVER GAINS 

 
The stochastic gradient approach has probably been 
popularized by Widrow’s derivation of the LMS 
algorithm and its incredible success in solving 
difficult problems with ease in spite of its 
computational simplicity (Widrow and Stearns, 
1985). In selecting the Luenberger observer gains we 
try to minimize the mean-square-error (MSE) 
between the actual output yk and the estimated output 

, which is defined by ky~ )]~()~[( kk
T

kk yyyyE −− . 
Employing the stochastic gradient approach (going 
only one step back in time), the instantaneous 
squared-error becomes the stochastic approximation 
to this cost function.  
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For multiple output systems, L will have multiple 
columns. Using (5), we can derive the (approximate) 
gradient of the instantaneous cost function with 

respect to each of the columns of L, denoted by L:j. 
This gradient is given in (6) and is approximate 
because the dependency of the current weight vector 
on the previous value of the weight vector is omitted.  
 
It is well known and is trivial to show that this 
stochastic gradient forces the weight vector L to 
converge to the MSE-optimal values in the mean. 
Using a sufficiently small step size, which is also 
essential for the accuracy of the approximation, the 
misadjustment may be kept down. 
 
 

4. CASE STUDIES 
 
In this section, we study the performance of the 
proposed adaptive observer scheme on linear and 
nonlinear systems, including the Van der Pol 
oscillator and the chaotic Lorenz attractor. In all 
simulations, the step size is 0.01. 
 
4.1 Linear Time-Invariant System 
 
Our first case study uses a stable single-input single-
output LTI system excited by zero-mean white 
Gaussian noise (WGN). The system matrices are 
selected to be 
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Two simulation results are presented in Fig. 1; one 
with noiseless measurements and one with 
measurement noise at 25dB signal-to-noise ratio 
(SNR). Notice in Fig. 1a, where there is no 
measurement noise, the state stimation errors decay 
exponentially, whereas under measurement noise the 
estimate accuracy is bounded by the noise power, as 
expected. For the LTI system case, it is possible to 
determine an upper bound for the step size of the 
stochastic steepest descent to guarantee the 
asymptotic stability of the algorithm and the 
observer. However, this derivation will be omitted. 
 
4.2 Van der Pol Oscillator 
 
Our second case study involves the discretized (first-
order difference) Van der Pol oscillator dynamics. 
This is characterized by the following equations. 
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In (8), T is the sampling time used in the 
discretization and the smaller T is the better the 
approximation. Note that although the continuous 
Van der Pol dynamics are globally stable, the first-
order discretization causes some portion of the state- 
space to become unstable. If the state-trajectory 
passes through this unstable region, the observer 
might fail to follow the diverging state trajectory. 
However, as long as the state trajectory remains in 
the stable region, the observer converges smoothly. 
 
Once again, we present two simulation results 
corresponding to noiseless and noisy measurements. 

     



In the noisy output measurement case, the SNR is 
again 25 dB. These results are shown in Fig. 2. In 
these simulations we have assumed a sampling time 
of  and the oscillator parameter is selected to 
be 

1.0=T
5.0=µ . The system output is taken as the first 

state variable. The state estimation errors exhibit 
similar behavior to that observed in the LTI system 
case. In the noiseless case, the errors decay 
exponentially and in the noisy case they are bounded 
by a value controlled by the measurement noise. 
 
4.3 Lorenz Attractor 
 
The Van der Pol oscillator states converge to a limit 
cycle and one suspects if this periodicity helps the 
observer exhibit good performance. In order to clear 
these doubts, we test the observer scheme on a 
chaotic system that has very high Lyapunov 
exponents, thus without any correctional terms, the 
slightest difference in initial conditions will lead to a 
very large divergence in the state trajectories. The 
discretized Lorenz attractor dynamics, are given by 

    (9) 

kkkk

kkkk

kkk

xxTxbTx

xrxTxTx

xTxTx

,2,1,31,3

,3,1,21,2

,2,11,1

)1(

)()1(

)1(

⋅⋅+⋅⋅−=

−⋅⋅+⋅−=

⋅⋅+⋅−=

+

+

+ σσ

where the sampling time is taken as T  and 
the attractor parameters are chosen to be 

. The system output is 
assumed to be the first state variable. Two simulation 
results corresponding to noiseless measurement and 
25dB-SNR measurement noise are shown in Fig. 3. 
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5. NOISE ANALYSIS FOR LTI SYSTEMS 
 
In the case studies presented in the previous section, 
we have observed that the additive measurement 
noise causes the state estimate accuracy to be 
bounded. In fact this is expected and the Kalman 
filter addresses this problem and offers the optimal 
gain matrix to yield the best state estimates in terms 
of minimum estimation MSE. In this section, we will 
present an analytical analysis of the effect of noise on 
the asymptotic signal-to-error-ratio of the proposed 
adaptive observer scheme. For simplicity, we will 
assume a single-input single-output (SISO) LTI 
system. However, the approach can be easily 
generalized to multi-input multi-output (MIMO) 
linear systems and can also be employed to 
approximately determine the effect of noise for 
nonlinear systems using linearization. 
 
Now, without loss of generality, suppose that the 
input to our SISO system (A,b,c) is zero mean white 
Gaussian noise with power . The output 
measurement noise is also zero-mean white Gaussian 
with . We observe that 
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(a) 

(b) 
Figure 1. The LTI system states, their estimates, and 
the estimation errors for a) the noiseless measurement 
case b) the noisy measurement case. 
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(b) 

Figure 2. The Van der Pol oscillator states, their 
estimates, and the estimation errors for a) the 
noiseless measurement case b) the noisy 
measurement case. 

     



from which we notice that if the eigenvalues of A are 
inside the unit circle, , and likewise 

. Now let’s consider  
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which, along with the fact that the means converging 
to zero, defines the asymptotic behavior of the state 
covariance matrix. The state covariance matrix is 
defined as Σ . We 
notice from (11) that this covariance matrix, provided 
that A has stable eigenvalues, asymptotically 
converges to a value Σ  that satisfies the following 
equation. 
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By recursively substituting the right hand side of (12) 
in for Σ  in the right hand side, we can obtain an 
explicit solution for . 

∞x

∞Σ x

  (13) βσσ 2

0

2 ))(( u
i

Tii
ux bAbA ==Σ ∑

∞

=
∞

From this, we can determine the asymptotic output 
variance in terms of the Markov parameters cAib as 
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Assuming that the observer in (3) has access to the 
noisy measurement kkk vyy +=

2
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, where vk is zero-

mean WGN with variance , we see that the 
observer error dynamics are given by 
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covariance matrix converges to 
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Under these circumstances, the asymptotic signal-to-
error ratio (SER) for the estimation of the jth state 
variable can be calculated in decibels as 
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From (17) and (18), we notice that SERj=SNR+C, 
where C is some constant that depends on A, b, and c. 
In order to demonstrate this result experimentally, we 
have performed a series of Monte Carlo simulations. 
Given the system described in (7), we have run 10 
Monte Carlo simulations for each of the various SNR 
levels ranging from –10dB to 25dB. The SER and 
SNR values corresponding to each simulation are 
estimated using the last 500 samples of each 1000-
sample run and these values were averaged over 
these 500 samples as well as the 10 Monte Carlo 
simulations, which used randomly selected initial 
state vectors.  
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Figure 3. The three states, their estimates, and the 
estimation errors for a) the noiseless measurement 
case b) the noisy measurement case for the Lorenz 
attractor. 
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Figure 4. The SER (dB) versus SNR (dB) plots using 
Monte Carlo simulation results for the two state 
estimates of an LTI system. 
 
The results of these Monte Carlo simulations are 
summarized in Fig. 4. In the two subplots, we show 
the SER for the estimation of each state variable 
versus the SNR of the output measurements. The 
slopes of the best lines fit using least squares are 
consistent with our expectations. They are 0.99566 
and 0.98050, which are very close to the predicted 
value of 1. 
 
 
 
 
 
 

     



6. CONCLUSIONS 
 
In this paper, we have introduced an adaptive 
extended Luenberger observer scheme for state 
estimation in nonlinear, time-varying systems. We 
have demonstrated the effectiveness and the accuracy 
of the state estimator on an LTI system, the Van der 
Pol oscillator, and the Lorenz attractor. The proposed 
adaptive observer scheme is therefore a promising 
approach for state estimation in nonlinear dynamical 
plants. 
 
The adaptive observer tries to obtain the state 
estimates that minimize the output estimation error. 
In the case of linear systems, we believe that the 
observer gains converge to those of the Kalman filter, 
although we do not have a rigorous proof. For 
externally excited nonlinear systems, we should not 
expect the observer gains to converge to any specific 
value; in order to maintain the optimality of the 
output estimates, the observer gains will keep 
adapting based on the current local Jacobian matrices 
of the state and output equations. 
 
We have studied analytically the noise rejection 
capability of the observer in the LTI system case and 
showed that the power of the state estimation errors 
depend on the output measurement signal to noise 
ratio, input power, and the Markov parameters of the 
system. Using Monte Carlo simulations, we have 
demonstrated that the signal-to-estimation-error 
ratios accurately and rapidly converge to their 
theoretical asymptotic values. An extension of this 
noise analysis to predict the estimation-error power 
in the general nonlinear system case lies as a future 
line of research.  
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