
NONLINEAR CHANNEL EQUALIZATION 
USING MULTILAYER PERCEPTRONS WITH 

INFORMATION-THEORETIC CRITERION 
 
 

Deniz Erdogmus1, Deniz Rende2, Jose C. Principe1, Tan F. Wong2 

 
1Computational NeuroEngineering Lab, [deniz,principe]@cnel.ufl.edu 

2 Wireless Communications Lab, rende@ecel.ufl.edu, twong@ece.ufl.edu 
Elect. & Comp. Eng. Dept., University of Florida, Gainesville, FL 32611.  

 
Abstract.  The minimum error entropy criterion was recently suggested in 
adaptive system training as an alternative to the mean-square-error criterion, 
and it was shown to produce better results in many tasks.  In this paper, we 
apply a multiplayer perceptron scheme trained with this information 
theoretic criterion to the problem of nonlinear channel equalization.   In our 
simulations, we use a realistic nonlinear channel model, which is encountered 
when practical power amplifiers are used in the transmitter.  The bandwidth-
efficient 16-QAM scheme, which uses a dispersed constellation, is assumed. 
 
 
INTRODUCTION 

 
Since Wiener’s classical work on adaptive filters [1], the mean-square-error 

(MSE) criterion has been the workhorse of function approximation and optimal 
filtering.  It has especially become popular due to the analytical simplicities it 
introduces when employed to FIR filtering.  Recently, we proposed minimizing 
Renyi’s entropy of the error signal in supervised adaptive system training, and 
used a nonparametric estimator based on Parzen windowing for the entropy [2].  
We also know that a system trained with the entropy criterion minimizes an 
information theoretic distance measure between the probability density functions 
(pdf) of the desired and the actual outputs [3].  The entropy criterion was applied 
to a variety of problems including chaotic time series prediction [2,3] and channel 
equalization [4] with successful results. 

The use of large constellations provides bandwidth efficient modulation.  
Quadrature amplitude modulation (QAM) type modulation techniques have 
constellations, in which signal points are uniformly spread. Information is carried 
by both signal amplitude and phase; hence they are not constant envelopes.  Thus, 
efficient nonlinear power amplifiers cannot be utilized in the transmitter, without 
equalization in the receiver.  The use of nonlinear amplifier results in a nonlinear 
channel.  The classical paper by Saleh provides a simple nonlinear model for this 
nonlinearity introduced by the power amplifiers, which accurately represents 
experimental data for various practical situations [5].  A variety of approaches 
employing the MSE criterion have been taken towards solving this nonlinear 
channel equalization problem.  A classical approach suggested by Falconer 



assumes knowledge of the parametric channel model, and tries to adaptively 
equalize the nonlinear channel by a suitably chosen equalizer architecture [6].  
Decision-feedback is also applied to improve performance.  Saleh and Salz, 
however, proposed a transmitter-based method, where a recursive algorithm is 
used to predistort the signal constellation to provide a linear overall channel [7].  
Recently, the use of neural networks for channel equalization has become popular.  
An example is [8], where several neural network topologies are compared in terms 
of both performance and complexity. 

The idea of using multilayer perceptrons (MLP) has existed in the literature with 
successful examples of improved performance over linear equalizers.  Motivated 
by this fact, we employ an MLP based equalization scheme for the nonlinear 
channel model given by Saleh.  In contrast to the above approaches where MSE is 
adopted as the optimality criterion, the minimum error entropy criterion is utilized 
in the training process.  This choice of optimality criterion is motivated by the 
improved performance of the neural networks in various applications when 
compared to the MSE criterion, in the case when the network topology is not 
sufficient to achieve small error values in training [2,3,4].  In fact, we had proven 
that if the training error is  very small at the optimal solution compared to the 
kernel size, the error entropy solution is very close to MSE solution.  This occurs 
in two cases: A very large kernel size in entropy estimator, or sufficiently wide 
span function estimator such that the error is very small [2].  

The organization of this paper is as follows.  First, we briefly describe the 
nonlinear channel model and the modulation scheme that is used. Next, we provide 
an  overview of the entropy criterion and the training algorithm for the MLP.  
Simulation results for the proposed equalizer under additive white Gaussian noise 
(AWGN) and finally the conclusions are given. 

 
 

NONLINEAR CHANNEL MODEL  
 
Practical power amplifiers introduce nonlinear distortion in the amplitude and 

the phase of the transmitted signal.  The simple nonlinear model, described by 
Saleh, is widely used in developing methods to equalize nonlinear channels [5].  
This model formulates the amplitude and phase distortion due to a nonlinear 
amplifier in the transmitter, using two simple two-parameter formulas. 

Input signal to the nonlinear channel can be written as 
 

)](cos[)()( ttwtats c ϕ+=                 (1) 
 

Here, cw is the carrier frequency, )(ta is the modulated amplitude, and )(tϕ is 

the modulated phase.  The amplitude and phase distortion are functions of the 
amplitude of the input signal, which are denoted by )]([ taA  and 

)]([ taΦ respectively. The output signal after the nonlinear channel is given by 
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The model describes the distortions )]([ taA  and )]([ taΦ  by the following 
functions 
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In this paper, we study the nonlinear channel equalization problem of a 
communication system employing 16-QAM, which has a rectangular constellation. 
The transmission signal )(ts for a general M-QAM is given by, in complex 

baseband representation 
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Here nth symbol interval is given by the amplitude and phase na and 
nθ , T  is 

the symbol interval, and )(tp is the pulse waveform with duration T . The data 
symbol can alternatively be represented by its real and imaginary parts, which can 
take one of Mm 2log= values )1(,,3,1 −±±± mL [9]. 

The constellation for the 16-QAM is shown below.  Bit assignments are chosen 
as the Gray coding so that neighboring symbols differ only in one bit position.  
Each symbol corresponds to four data bits. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. 16-QAM Constellation with Gray coding 
 
The received signal, in complex baseband representation, is composed of the 

signal distorted by the nonlinear channel and a complex Gaussian noise with 
uncorrelated real and imaginary parts. 
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The goal of the equalizer is to estimate the transmitted symbol from the received 
signal given in (6). 

 
 

MINIMUM ERROR ENTROPY ADAPTATION 
 
The general layout of a supervised-learning scheme is illustrated in Fig. 2.  

Classically, MSE is used as the optimality criterion in the adaptation process.  It 
was shown before that minimizing the error entropy is equivalent to maximizing 
the mutual information between the desired output and the actual system output 
[3].  This , in turn, is equivalent to minimizing the α-divergence between the joint 
probability density functions (pdf) of the input-desired and input-output signal 
pairs.  This quantity is a Riemannian metric, defined by Amari, on the nonlinear 
manifold of pdfs [10].  This link between error entropy and pdf distances 
motivates the use of Renyi’s entropy as the optimization criterion.  
 
 
 
 
 
 

 
 
 

Figure 2. Supervised adaptive system training 
 

In order to proceed with the training process with a finite number of training 
data, however, we need to devise a nonparametric estimator for entropy.  Renyi’s 
entropy for a random variable e is given in terms of its pdf as [11] 

∫
∞

∞−−
= deefeH e )(log

1
1

)( α
α α

                               (7) 

where α >0 is the order of entropy.  It is trivial to show, using L’Hopital’s rule, 
that the limit of Renyi’s entropy as α→1 is Shannon’s entropy.  We call the 
argument of the log the (order-α) information potential [2,12].  It is possible to 
write the information potential as an expected value as   
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which enables us to obtain the nonparametric estimator we seek after the Parzen 
window estimator [13] for the pdf of e given below is substituted. 
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In (9), (.)σκ is the kernel function, usually a symmetric pdf with σ denoting the 

width.  Since log is a monotonic function, minimization of Renyi’s entropy 
corresponds to maximization of the information potential for α >1.  Therefore, the 
information potential can replace the entropy criterion resulting in a simpler cost 
function.   

Suppose the adaptive system under consideration in Fig. 2 is to be trained using 
a gradient-based algorithm.  Then it is required to evaluate the gradient of the 
information potential estimator in (9) with respect to the weights.  The sought 
expression is  
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The gradient of the output samples with respect to the weights depends on the 
topology of the adaptive system under consideration.  Specifically for a MLP, they 
can be computed as in the standard backpropagation algorithm [14].   

Detailed discussion about the effect of the free parameters α and σ on the 
structure of the performance surface and the behavior of the algorithm can be 
found in [2] and [15]. 

 
 
EQUALIZATION METHOD 
 

The proposed equalizer consists of two MLPs operating in parallel.  One of 
them, MLP1, is trained to learn the mapping from the amplitude of the transmitted 

symbol, S , to the amplitude of the received signal, R , where S and R  are 

phasors, obtained from the signals by integrating over one symbol duration and 
scaling down by the symbol duration.  Assigning the input-output variables in this 
manner also helps the MLP to avoid modeling the noise in the received signal.  
The other, MLP2, is trained to learn the mapping from R  to the phase shift 

introduced by the nonlinear channel, where the desired output is the given by the 
phase difference SR ∠−∠  between the received and transmitted symbols. 

The training process of the MLPs is the depicted in Fig. 3.  The training data 
consists of the amplitudes and angles of the phasors computed as described above. 

 
 
 
 
 
 
 
 
 
 

Figure 3. Training of MLPs in the equalizer 
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In the 16-QAM, there are only three possible values for S .  The outputs of 

MLP1 corresponding to these three S  values are compared with the magnitude of 

the measured phasor, mR , and the S -value that yields the closest estimate is 

chosen.  This is the estimation for the amplitude of the transmitted symbol in the 

test process.  The final decision is made using the estimated S  and the difference 

between R∠  and the output of MLP2, which provides an estimate for S∠ .  The 
in-phase and quadrature components corresponding to this phasor, formed by the 
estimated amplitude and phase, are determined.   The symbol that minimizes the 
Euclidean distance to this complex number is decided as the transmitted symbol.  

 
 

SIMULATION RESULTS 
 
In the previous section, we described the training and testing processes for the 

equalizer.  We trained two MLPs, both with a single hidden layer with 6 neurons 
and a linear output neuron using the entropy minimization algorithm.  The training 
set consisted of 360 symbols.  The variance of the discrete-time noise is adjusted 
to achieve a predetermined signal-to-noise ratio (SNR) at the equalizer input.  SNR 
here represents the ratio of average bit energy to noise power spectral density 
(PSD).  For each SNR value MLPs are trained and tested independently.  In 
training the MLPs, steepest ascent for information potential was used.  A dynamic 
step size, whose value increases when the update yields a better performance, and 
decreases when the performance degrades, is utilized.  The entropy order was 
chosen as 3=α , and Gaussian kernels with a standard deviation of 1=σ were 
used in Parzen windowing.  It was observed that the weights of MLPs converged 
to the optimal solution in about 20-30 iterations, for all SNR values, with an initial 
step size of 1.  For comparison, we have also trained the same MLPs using the 
MSE criterion.  It was observed that these MLPs converged in 100 iterations 
starting with the same stepsize.  

Upon completion of the training process, the equalizers were tested for bit error 
rate (BER) using appropriate noise levels and sufficiently long test bit sequences.   
BER versus SNR plot is shown in Fig. 4.  Also shown is the difference in the BER 
performances of the MLPs trained using MSE and Entropy criteria.  As we 
expected, As the SNR increased, corresponding to smaller training errors, the 
solutions of the entropy training and MSE training became closer.  This fact was 
proven in [2]. 

The channel parameters in this simulation were chosen as  
 

1,3/,1,2 ==== φβπφαβα aa .                (11) 
 

In [7], these values are stated to correspond to a typical severe nonlinear distortion, 
as we can observe below in Fig. 5.  Also in Fig. 5, we illustrate the how the 
deformation on the signal constellation by the nonlinear channel is reversed by the 



equalizer.  This figure also demonstrates the elimination of the continuous noise in 
the radial direction by the equalizer.  The SNR value is 20dB in this example. 
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Figure 4. a) BER vs. SNR b) Difference of BER between MSE and Entropy Equalizers 
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Figure 5. Constellations for (a) transmitted signals (b) received signals (c) equalizer output 
 

The simulation results presented here clearly show that the MLP-based 
equalization scheme, which is trained with an information-theoretic criterion, 
successfully negates the distortion introduced by the nonlinear channel, and 
furthermore, eliminates the noise component in the radial direction of the 

(a) (c) (b) 



constellation.  Although we have presented here the simulation results where 360 
training symbols were used, our studies with smaller training sets with as few as 
60 symbols achieved similar performance in terms of BER.  

 
 

CONCLUSIONS 
 
Motivated by the improved performance of neural networks trained with an 

information-theoretic criterion in a variety of problems, and the successful 
applications of neural networks to the nonlinear channel equalization problem, we 
have proposed an MLP-based equalization scheme.  This scheme is applied to a 
realistic nonlinear channel model, which delivers a severe distortion on the signal 
constellation, due to the use of efficient nonlinear power amplifiers in the 
transmitter.  Simulations carried out with the 16-QAM scheme under various SNR 
conditions pointed out that this deformation in the signal space could be 
successfully reversed to achieve practically acceptable bit error rates.  Also 
comparison of the entropy equalizer with the MSE equalizer demonstrated the fact 
that at low SNR values entropy training is more advantageous.  Furthermore, it 
was observed that, as proven in preceding studies, the solutions of the minimum 
error entropy and minimum mean square error criteria approached to each other as 
the training error became smaller with increasing SNR. 

Some remarkable properties of the proposed equalizer are its computational 
simplicity, due to the small size of MLPs that can achieve good performance, 
efficient extraction of information from a small number of training samples, due to 
the information-theoretic optimality criterion, and the robustness to the radial 
component of the additive channel noise. 
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