
CONVERGENCE ANALYSIS OF THE 
INFORMATION POTENTIAL CRITERION IN 

ADALINE TRAINING 
 
 

Deniz Erdogmus, Jose C. Principe 
Computational NeuroEngineering Lab, Electrical & Computer Engineering Dept. 

University of Florida, Gainesville, FL 32611 
[deniz,principe]@cnel.ufl.edu 

 
Abstract.  In our recent studies we have proposed the use of minimum error 
entropy criterion as an alternative to minimum square error (MSE) in 
supervised adaptive system training.  We have formulated a nonparametric 
estimator for Renyi’s entropy with the help of Parzen windowing.  This 
formulation revealed interesting insights about the process of information 
theoretical learning. We have applied this new criterion to the training of 
linear and nonlinear adaptive topologies under the problems of blind source 
separation, channel equalization, and time-series prediction with superb 
results.  In this paper, we analyze the structure of the entropy criterion 
performance surface around the optimal solution and we derive the upper 
bound for the step size in Adaline training with the steepest descent 
algorithm.  We also investigate the effects on adaptation of the kernel size in 
the Parzen windowing, and order of Renyi’s entropy.   
 
 
INTRODUCTION 

 
Mean square error (MSE) has been the fundamental performance criterion in 

function approximation and optimal filtering.  Starting with the pioneering work of 
Wiener [1] and Kolmogorov that instituted the viewpoint of regarding the adaptive 
filters as statistical function approximators, MSE has become the workhorse of 
adaptive filtering theory.  Combined with the basic adaptive FIR filter structure, 
MSE yields a simple optimization problem, whose solution is given by the 
Wiener-Hopf equation [2]. After the development of this analytical solution, the 
equivalent procedure of using the steepest descent algorithm to minimize the tap 
weights of the FIR filter was proposed and analyzed [2, 3]. The least square 
algorithm (LMS) proposed by Widrow is the most widely recognized variant of 
this algorithm [4].  The two main thrusts in these analyses were the issues of 
stability and convergence speed.  Due to the quadratic form of the cost function in 
terms of the weight vector, the analysis of the algorithms could be simply and 
accurately done [4].   

Previously, we proposed the use of quadratic Renyi’s entropy of the error signal 
in supervised adaptive system training [5], and used a nonparametric estimator 
based on Parzen windowing with Gaussian kernels due to analytical reasons.  
Later, we have proved that a system trained with the error entropy criterion 
minimized an information theoretic distance measure between the probability 



density functions (pdf) of the desired and the actual outputs, and this was 
demonstrated experimentally for chaotic time series prediction using neural 
networks [6].  Recently, we have formulated a new nonparametric estimator for 
Renyi’s entropy that allows us to compute any order of entropy using any suitable 
kernel function [7].  This generalized estimator reduced to the previous estimator 
for quadratic entropy for the appropriate choices of order and kernel function.  In 
that work, we were also able to generalize the concepts of information potential 
and information force to any order α.  These quantities were previously defined by 
Principe et.al. in the context of blind source separation for quadratic entropy [8].   

In the adaptation process, the steepest ascent was extensively used due to its 
speed and accuracy.  The step size was arbitrarily chosen small, but how to choose 
suitable values for different kernel sizes and entropy orders was unknown.  In this 
paper, we seek to establish the rules governing this association, and devise a way 
to determine a proper value for step size to guarantee stability of the algorithm. 

The organization of this paper is as follows.  In the next section, we give a brief 
overview of the information potential criterion, and its nonparametric estimator.  
We derive the steepest ascent algorithm for Adaline, and find the linearized 
dynamic equations that govern the dynamics of weights.  An upper bound for the 
step size for stability, and an approximate time constant expression for the 
dynamics of the weights are also derived.  Next, the effects of the entropy order, 
and the kernel size on performance surface, hence on the dynamics of the modes 
are investigated.  A section is devoted to a case study very helpful in visualizing 
the results of the preceding sections.  Finally, a summary of the main results and 
observations that have been made is given in the conclusions. 

 
 

INFORMATION POTENTIAL CRITERION 
 
Consider the supervised training scheme depicted in Fig. 1.  We have previously 

showed that training the adaptive system to minimize the entropy of the error 
distribution is equivalent to minimizing the α-divergence [9] between the joint 
pdfs of the input-desired and input-output signal pairs [6].  Therefore, as the cost 
function, we utilize Renyi’s entropy of the error distribution.   
 
 
 
 
 
 

 
 
 

Figure 1. Supervised adaptive system training 
 

Renyi’s entropy for a random variable e is given in terms of its pdf as [10] 

kx
x  

ke
x  

ky
x  

kd
+

_

Unknown 
System 

Adapt. 
System 

Renyi’s 
Entropy 



∫
∞

∞−−
= deefeH e )(log

1
1

)( α
α α

                               (1) 

where α >0 is the family parameter of the entropy, sometimes called the order of 
entropy.  In the limit, Renyi’s entropy approaches Shannon’s entropy as α→1.  We 
have defined the argument of the log to be the (order-α) information potential [7, 
8].  We can write the information potential in a different form using the expected 
value operator as   
 

[ ] ∑∫ −− ≈==
i

ieee ef
N

efEdeefeV )(1)()()( 11 ααα
α

                      (2) 

 

By substituting the Parzen window estimator [11] for the pdf of e in (2), we get 
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where the kernel function in Parzen windowing is σκ  with σ denoting the width 

of the window in terms of a predetermined unit-width kernel κ  as given below.  
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Since log is a monotonic function, minimization of Renyi’s entropy corresponds 
to maximization of the information potential for α >1.  Therefore, the information 
potential can replace the entropy criterion resulting in computational savings.   

We have previously investigated the relationship of this new criterion with the 
convolution smoothing method and the link between the quadratic entropy and the 
MSE criterion [7].  Specifically, we have shown that MSE is a special case of the 
quadratic entropy minimization criterion, corresponding to a very large kernel size.  
As for its connection to convolution smoothing, we have shown that increasing the 
kernel size causes a dilation of the performance surface in the weight space, which 
in the limit as the number of samples go to infinity, turns into an equivalence with 
smoothing the cost function (eliminating local maxima) by convolving with a 
function, where the kernel size controls the amount of smoothing applied.   

 
 

STEEPEST DESCENT TRAINING OF ADALINE 
 
Suppose the adaptive system under consideration in Fig. 1 is an Adaline 

structure with a weight vector w .  The error samples can then be represented by 

k
T

kk xwde −= , where kx  is the input vector, formed by feeding the input 

signal to a tapped delay line for the special case of FIR filter.  Then the gradient of 
the information potential estimator in (3) with respect to the weights is simply 
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In this expression, further simplifications are possible through the use of (4) and 
the following identity between the derivatives of a width-σ kernel and a unit-width 
kernel. 
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With these substitutions, the explicit expression for the gradient becomes 
 

( ) ( ) 






 −⋅∆′⋅






 ∆−=
∂

∂ ∑∑ ∑
−

i

T
ji

ji
w

j

ji
w

i

xxee
Nw

V )()1(
2

κκ
σ
α

α

αα
α                     (7) 

 

From here on we will use the following notation. 
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In order to maximize the information potential, we update the weights along the 
gradient direction with a certain step size η. 
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where ))(( nwVα∇  denotes the gradient of αV given in (7) evaluated at )(nw .  

To continue with our analysis, we consider the Taylor series expansion truncated 
to the linear term of the gradient around the optimal weight vector *w . 
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Notice that truncating the gradient at the linear term corresponds to approximating 
the cost function around the optimal point by a quadratic curve.  The Hessian 
matrix of this quadratic performance surface is 2/R , where R  is given in (11).   
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Now, defining a new weight vector space *www −= whose origin is translated 

to the optimal solution *w , we can rewrite the linearized dynamics of the weight 
equations in the vicinity of the solution in terms of the step size and the Hessian 
matrix as given in (12).  These are coupled equations for the translated weights.   
 

[ ] )()1( nwRInw η+=+                        (12) 



 

In order to obtain decoupled equations, we rotate the vector space by defining 
wQv T= , Q  being the orthonormal matrix consisting of the eigenvectors of R .  

Thus, the uncoupled dynamics for the translated and rotated weights are 
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where Λ  is the diagonal eigenvalue matrix with entries ordered in correspondence 
with the ordering in Q .  From this set of equations, we can isolate the dynamics 

of the weight vector along each mode of the matrix R .  Specifically, for the ith 
mode, the dynamic equation will only depend on the ith eigenvalue of R  by 
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Note that, since R  is the Hessian of the performance surface evaluated at a 
maximum point, its eigenvalues are negative.  For a stable dynamics, all of the 
coefficients in the n equations of (14) must be inside the unit circle, that is 

11 <+ iλη .  This, results in the following bound for the step size for stability. 
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This condition is very similar (as it should be) to what we obtain for the MSE 
criterion [2, 4]; except, we consider the eigenvalues of the Hessian of information 
potential instead of those of the autocorrelation matrix of the input. 

At this point, it also becomes possible to talk about time constants of the modes 
in the neighborhood of the optimum point.  We can determine an approximate time 
constant for each individual mode whose dynamic equations are governed by (14).  
Specifically, for the kth mode, we write  
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from which the time constant is evaluated as 
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The time constants allow us to compare the convergence times of different 
modes.  In order to evaluate the overall convergence speed, one must consider the 
slowest mode, which corresponds to the largest time constant, i.e. the one that 
corresponds to the largest (smallest absolute value) eigenvalue. 
 
 
EFFECT OF KERNEL SIZE AND ENTROPY ORDER ON EIGENVALUES 

 
Understanding the relationship between the eigenvalues and the kernel size and 

α is crucial to maintain the convergence of the algorithm under changes in these 
parameters.  One practical case where this relationship becomes important is when 



we adapt the kernel size during the training.  Motivated by the link between the 
information potential estimator in (3) and the convolution smoothing method of 
global optimization [7, 12], we suggested starting from a large kernel size and 
decreasing it to a nominal value during adaptation.  It is then possible to use 
steepest ascent to maximize the information potential, but still guarantee 
convergence to the global maximum by smoothing of the cost function by 
convolution by a suitable functional.  Since in this approach, the kernel size is 
decreased, we need to now how to adapt the step size to achieve faster learning in 
the initial phase of adaptation (by using a larger step size) and stable convergence 
in the final phase (by using a smaller step size). 

For convenience, we repeat here how to observe the dilation in weight space. 
Consider the information potential expression in (3) evaluated in terms of the unit-
size kernel by the help of (4).  It is clear that the introduction of a kernel size other 
than unity causes the error samples to be treated as if they are divided by σ.  Thus 
in the error-space the location of the global optimum is scaled along a radial 
direction from the origin.  The exception is the case of zero error because then the 
global optimum is the origin in the error space and the optimal solution does not 
change with kernel size.  Since the adaptive topologies used in practice are mainly 
contractive or volume-preserving structures, the dilation/stretching effect is 
directly translated to the weight-space.  This property will be observed in the 
behavior eigenvalues under changing kernel size. 

As an example consider the case where we evaluate the quadratic information 
potential using Gaussian kernels.  In this case, the Hessian matrix simplifies to 
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Observe from (8) that as σ increases, −→∆ 0
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speed ( )6−σO .  This is faster than the reduction rate of the denominator, which is 

( )2−σO , hence overall, the eigenvalues of R  approach −0 .  This means, one can 
use a larger step size in steepest ascent, and still get stable convergence to the 
global maximum.  In fact, this result can be generalized to any kernel function and 
any α.  The dilation is a direct cause of the increase in eigenvalues towards zero.   

The analysis of the eigenvalues for varying α is more complicated.  In order to 
estimate the behavior of the eigenvalues under changing α, we will exploit the 
following well-known result from linear algebra relating the eigenvalues of a 
matrix to its trace.  For any matrix R , whose eigenvalues are given by the set 
{ }iλ , the following identity holds. 
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Now consider the general expression of R  given in (11).  The trace of R  is easily 
computed to be as given below in (20).  The eigenvalues of R  are negative and 
the dominant component, which introduces this negativity, is the term in the last 
line of (20).  The negativity arises naturally since we use a differentiable 



symmetric kernel, and since at *w the entropy is small, the error samples are close 
to each other and the second derivative evaluates as a negative coefficient.  Now 
let’s focus on the term which involves the )3( −α -power in the first line of (20).  

Since all other terms vary linearly with α, this term will dominantly affect the 
behavior of the trace when α is varied.  Consider the case where σ is large enough 
such that the small entropy causes the kernel evaluations in the brackets to be close 
to their maximum possible values and the sum therefore exceeds one.  In that case, 
the power of the quantity in the brackets will increase exponentially with 
increasing α, thus regardless of the terms affected linearly by α , the overall trace 
value will decrease (increase in absolute value).  As a result, a narrower valley 
towards the maximum will appear.  Consequently, the upper bound on the step size 
for stable convergence will be reduced. 
 









































−⋅∆′′⋅








∆+









−⋅∆′−

⋅







∆

−
=

∑ ∑∑

∑ ∑

∑ ∑
−

i k
jkik

ji
w

i

ji
w

k i
jkik

ji
w

j i

ji
w

xxee

xxe

e
N

Rtr

2

2

3

)()()(

)()()2(

)(
)1(

)(

**

*

*

κκ

κα

κ
σ
α

α

αα

           (20) 

 

On the other hand, if the kernel size is (very) small such that the sum in the 
brackets is less than one, then the )3( −α -power of this quantity will decrease, 
thus result in a wider valley towards the maximum in contrast to the previous case.  
However, in practice we do not want to use a very small kernel size, as it will 
increase the variance of the Parzen pdf estimation [11]. 

In fact, there is another approach that directly demonstrates how the eigenvalues 
of R  will decrease with increasing α and vice versa.  Consider expression (11) 
again.  Since at the operating point the error entropy is small and the difference 
between error samples is close to zero, the sums involving the derivative of the 
kernel function are approximately zero. Under the conditions mentioned in the 
previous paragraph, all the terms involving α remain as scalar coefficients that 
multiply a matrix, whose eigenvalues are negative. With the same arguments on 
how increasing α increases these coefficients, we conclude that the eigenvalues of 
the matrix R  will increase in absolute value for a large kernel size and decrease 
for a small kernel size.   

In this section, we have investigated the effect of the entropy order α and the 
kernel size σ on the eigenvalues of the Hessian matrix of the information potential 
criterion around the optimal solution.  We have seen that the entropy order can 
have differing effects depending on the kernel size.  As for the effect of kernel 
size, we have observed that as it increases, the quadratic approximation to the cost 
function has larger eigenvalues. This points out a wider region of validity for the 
approximation.  We remark that our conclusions in this section do not only apply 



to the eigenvalues of R , but they generalize to how these two parameters affect 
the volume of the region where our quadratic approximation is valid.  Indeed, as 
we will demonstrate with an example in the following section, the absolute values 
of the eigenvalues and this volume are inversely proportional.  This result is 
imperative from a practical point of view, because it explains how the structure of 
the performance surface can be manipulated by adjusting these parameters.   
 
 
CASE STUDY 

 
In the previous section, we had analyzed the effect of the kernel size and the 

entropy order on the location of the global optimum and the eigenstructure of the 
performance surface around this point.  In this section, we present a case study to 
visualize the conclusions derived above.  Consider a time series prediction 
example, where the training set consisting of input and corresponding desired 
output pairs is constructed from the impulse response of a single pole (at 0.9) 
transfer function with a unit gain.  The FIR filter length is chosen to be two so that 
we can show equilevel contours in the weight space.  With this configuration, the 
prediction task becomes finding the best weights according to the information 
potential criterion to predict the next sample in the time series as a linear 
combination of the previous two values.  The training set consists of 20 input-
output pairs.  We evaluate the information potential expression given in (3) for two 
values of α (specifically 2 and 4) and two values of σ (specifically 1 and 2) on a 
grid in the weight space.  Fig. 2 summarizes these results. 

Upon observation of Fig. 2a, we notice that along both rows (upper row uses 
α=2, lower row uses α=4) as we increase the kernel size σ, the equilevel ellipses 
expand showing us that the eigenvalues of R  have decreased in absolute value 
and we can use a larger step size and still converge stably.  Along the columns we 
observe the behavior of the performance surface under changing α.  Notice that 
increasing the order α resulted in reduction of the ellipses (larger magnitude 
eigenvalues).  This case study demonstrates one other interesting property of the 
information potential cost function.  We have previously proved that MSE is a 
special case of the information potential criterion under proper choices of the 
kernel function (Gaussian kernels satisfies those requirements).  This example 
clearly shows that if we indefinitely increase the kernel size, the performance 
equilevel contours will merely consist of ellipses, hence the equivalence with MSE 
in the limit, however, this process introduces a higher bias in Parzen window 
estimate of the pdf.  We are interested in the volume of the region where the 
contours are ellipses, as all the theory we have derived in the previous sections, 
with the linear approximation to the gradient in (10), is accurate there. 

Besides the above stated reasons, there are practical issues for which the volume 
of the region with elliptical contours is crucial.  The kernel size is an active 
parameter that controls the amount of dilation/smoothing effect as proven by 
Erdogmus and Principe [7].  Thus, we study the effect of the kernel size on the 
structure of the cost function, especially in the vicinity of the global maximum, in 
more detail in this case study.  Since in this toy problem the solution achieves zero 



error by setting the weight vector to [0.9,0], the dilation occurs around this point 
when the kernel size is varied. 
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Figure 2. a) Information potential contour plots for different α and σ values  b) Information 
potential contours at 95% of max possible value for σ=1,3,5,7,9 

 
Fig. 2b demonstrates the increase of volume where the quadratic approximation 

is valid as the kernel size increased, for various values of α.  Notice also that as α 
increases, the ellipses corresponding to matching kernel sizes decrease in size in 
accordance with our conclusions about the effect of α for large σ.  Each ellipse in 
the subplots corresponds to an equilevel contour for a specific kernel size, where 
the value of the information potential is 95% of its maximum possible value 
attained when the weights are optimum. For a fixed α, the ellipses become larger 
as σ increases.  As a conclusion, this example displays both the dilation property, 
thus the effect on the eigenvalues of R , and the proportionality between the 
volume of the quadratic region of the information potential and the kernel size. 

 
 
CONCLUSIONS 

 
Earlier we have demonstrated the superiority of the error entropy over the mean 

square error as the performance criterion in a variety of applications including 
equalization, and chaotic time series prediction in our previous studies.  This paper 
was however, was dedicated to the investigation of the convergence properties of 
the steepest descent adaptation in FIR training, when the minimization of the error 
entropy, equivalently maximization of the information potential for α>1, is utilized 
as the performance criterion. We have derived the difference equations, which 
govern the dynamics of the modes of the weight vector in a neighborhood (whose 
volume can also be controlled) of the global maximum of the information potential 
surface.  These equations gave rise to an upper bound for the step size for stability 
and a time constant expression to approximate the convergence speed of the in this 
neighborhood of the optimal solution. We examined the effects of the two 
characteristic parameters, namely the entropy order α and the kernel size σ, on the 
structure of the performance surface around the global maximum and on the size 
of the region where the quadratic approximation, hence all the theoretical results, 
are accurate.  It was found that, increasing α could both increase (for a small 



kernel size) or decrease (for a large kernel size) this volume, whereas increasing σ, 
in consistency with our previous observations on the dilation of the cost surface in 
the weight space, induced smaller eigenvalues in magnitude and resulted in a 
wider region of validity.  Lastly, the case study we have presented demonstrates all 
these properties as well the equivalence between the information potential criterion 
and MSE in the limit, a result that was proven in a previous study.  It should be 
noted, however, that the optimal solutions of the minimum entropy criterion and 
the MSE criterion are not the same except when we can achieve zero error over the 
complete training data set.  Nevertheless, when the filter topology used is 
sufficient to approximate the target function accurately enough such that the errors 
become small, the kernel size we choose may appear as ‘large’ and in this case it is 
possible to obtain very close solutions from the two criteria.   
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