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ABSTRACT 
 
We have previously proposed the use of quadratic Renyi’s error entropy with a Parzen density estimator with 
Gaussian kernels as an alternative optimality criterion for supervised neural network training, and showed that it 
produces better performance on the test data compared to the MSE.  The error entropy criterion imposes the 
minimization of average information content in the error signal rather than simply minimizing the energy as MSE 
does.  Recently, we developed a nonparametric entropy estimator for Renyi’s definition that makes possible the use 
of any entropy order and any suitable kernel function in Parzen density estimation.  The new estimator reduces to 
the previously used estimator for the special choice of Gaussian kernels and quadratic entropy.  In this paper, we 
briefly present the new criterion and how to apply it to MLP training.  We also address the issue of global 
optimization by the control of the kernel size in the Parzen window estimation. 
 
 
1. INTRODUCTION 
 

Mean square error (MSE) has been the most widely 
utilized performance criterion in supervised learning 
due to its mathematical simplicity that allows theoretical 
analysis simple.  It also provided sufficient means for 
exploiting the second order statistics of signals in a 
world of Gaussian distributions and linear systems 
[Haykin].  Recently, the concept of information filtering 
started to develop in the signal processing community, 
and we had presented an entropy minimization 
algorithm, which uses the unconventional Renyi’s 
quadratic entropy with Parzen windowing, for 
supervised training of an MLP [Deniz ICA].  Also we 
had shown that the entropy minimization algorithm 
outperformed the MSE criterion in terms of acquiring 
more ‘information’ about the probability distribution of 
the desired signal.  In a later work, recently submitted 
we proved that this process was equivalent to 
maximizing the mutual information between the desired 
signal and the MLP output [Deniz SP].  In this paper, 
we present a generalized entropy minimization 
algorithm for MLPs.   

In this generalized entropy criterion framework, our 
previous algorithm is preserved as a special case 
corresponding to Renyi’s quadratic entropy.  The 
equivalence arguments about entropy minimization and 
mutual information maximization are still valid.  We 
also show that Parzen windowing, which is used to 
estimate the error probability density function, preserves 
the global minimum provided that certain constraints on 
the kernel function are satisfied.  Furthermore, we 
analyze the effect of kernel size on the cost function and 

show that there is a link with the convolution smoothing 
method of global optimization.   

The entropy minimization algorithm gives rise to 
some interesting analogies between information 
theoretical learning and physics.  With this criterion, it 
becomes possible to talk about quantities like 
information potential in a set of samples from a random 
variable and the information forces that these 
information particles exert on each other during 
learning.  These concepts were previously introduced by 
Principe et.al. for Renyi’s quadratic entropy in the 
context of blind source separation and SAR image pose 
estimation problems [Principe et al].  Here we extend 
the definition of these quantities to any choice of the 
parameter  for Renyi’s entropy and investigate their role 
in supervised learning. 

Finally, the algorithm is tested on the prediction of 
Mackey-Glass time series.  Results show that the 
entropy minimization algorithm is an effective tool for 
supervised training of adaptive systems.  Our analyses 
on the effect of kernel size show that this parameter can 
be utilized to modify the performance surface to our 
advantage in avoiding local minima. Such modifications 
are not possible with the MSE criterion.   

The organization of this paper is as follows.  First 
we derive the estimator for Renyi’s entropy in Section 
II.  Next, we define the order-α information potential 
and information forces, study their relationship with 
their quadratic counterparts, and demonstrate their role 
in the training process in Section III.  This investigation 
is followed by the presentation of the supervised 
steepest descent training algorithm for adaptive systems 
using the entropy as the performance measure.  
Following the algorithm, we start analyzing the 



 

 

mathematical details of the criterion in more detail.  In 
Section V, we demonstrate the link between our 
estimation method and the convolution smoothing 
method of global optimization.  We also look into the 
question of finding the relationship between the entropy 
criterion and the MSE criterion, and we show in Section 
VI that MSE is a special case of the quadratic entropy 
criterion under quite restrictive conditions.  Finally, we 
present a case study where we present result from a 
MLP training example in Section VII, followed by a 
discussion and conclusion section. 

 
 

2. ENTROPY ESTIMATOR 
 

Renyi’s entropy (order α) for a random variable with 
probability density function (pdf) (.)ef  is given by [11]
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Renyi’s entropy shares the same extreme points with 
Shannon’s definition for all values of α, i.e. its 
minimum value occurs at the δ-distribution, and the 
maximum occurs when at a uniform pdf.  In practice, 
usually it is necessary to nonparametrically estimate the 
density from the samples.  The pdf estimate of a random 
variable e  with the samples { }Nee ,,1 � , is obtained 

with the following expression using a kernel (.)σκ , 
where σ specifies the size of the window. 
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By observing that the integral of )(efe
α  in (1) is 

the expected value of )(1 efe
−α , we replace the 

expectation operator by the sample mean, and then we 
replace the actual pdf with the Parzen window estimate 
[12] to obtain the nonparametric entropy estimator. 
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We call the argument of the log in (1) the information 
potential [Principe et al].  Minimizing the entropy is 
equivalent to maximizing the information potential for 
α>1, or minimizing the information potential for α<1, 
since the log is a monotonous function.   

It can be shown that the minimum value of the 
entropy will be achieved when the error samples are 

01 === Nee � .  To prove that this point is a 
minimum, we evaluate the gradient and the Hessian of 

the estimator in (3) at these error samples.  When these 
quantities are evaluated, we find that  
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and the eigenvalue-vector pairs of the Hessian are 
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The zero eigenvalue and the corresponding 
eigenvector are due to the fact that the entropy is 
invariant with respect to changes in the mean of the 
random variable.  Thus, the entropy has a minimum line 
instead of a single point along the direction where only 
the mean of the error samples changes.  For this reason, 
entropy training is unable to match the mean of the 
MLP output to that of the desired when the otput layer 
consists of linear neurons with bias terms.  These 
weights must be assigned proper values to set the error 
sample mean to zero after the training converges for the 
other weights.  The eigenvalues given in (5) show how 
to choose kernel functions to guarantee a minimum 
point.  Provided that 0)0( =′κ  (which is the case for 
symmetric and differentiable kernels), the nonzero 
eigenvalue with multiplicity (N-1) at 0=e  is positive 
iff N>1, 0)0( >κ , and 0)0( <′′κ . 

 
 
3. COMPENSATING FOR VARIANCE 

OF THE SAMPLE MEAN  
 

We know that the sample mean is an unbiased and 
asymptotically consistent estimator for the expected 
value operator.  However, it still introduces extra 
variance in the estimator, in addition to that of the 
Parzen windowing.  Consider the original quadratic 
information potential estimator, which uses Gaussian 
kernels [Deniz ICA]. 

 

��

���

� ��

−=

−−=

�
�

�
�
�

� −==

∞

∞−

∞

∞−

∞

∞−

i j
ij

i j
ji

i
i

o
e

eeG
N

deeeGeeG
N

deeeG
N

dyefeV

)(1

)()(1

)(1)()(

22

2

2
2

2

σ

σσ

σ

      (6) 



 

 

This estimator exploits the fact that the integral of 
the product of two Gaussian functions is another 
Gaussian function with twice the variance.  Now 
consider the new estimator with quadratic entropy and 
the same choice of kernel function.  We get the results 
by direct substitution of α=2 and G=κ σ in (3). 
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The estimator in (7) has exactly the same form as the 
one in (6), but a larger variance since the effective 
kernel size used in Parzen windowing is smaller.  This 
extra variance is introduced by the sample mean 
approximation.  In this special case, this can be 
compensated by simply choosing a larger kernel size in 
(7), specifically 2  times the original kernel size.  In 
general, for quadratic entropy, there exists a kernel 
function for (7) that corresponds to any choice of kernel 
in (6), which renders the exact same estimation for the 
information potential.  The relationship between these 
two kernel functions are given by 
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Gaussian kernels are very special, because a simple 
rescaling of the kernel function achieves this equality.   
 
 
4. INFORMATION POTENTIAL AND 

INFORMATION FORCES 
 

The use of kernels results in a formulation of the 
entropy that brings an interesting interpretation to the 
training process.  The concept of information potential 
fields, and information forces were defined and 
investigated for the quadratic entropy with Gaussian 
kernels before [Principe et al].  The training samples 
under this interpretation become information particles.  
With the new nonparametric entropy estimator, it 
becomes possible to define the order-α potentials and 
information forces.  The information potential estimator 
is   
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where the n-dimensional size-σ kernel is expressed in 
terms of the unit-size kernel as 
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From (9), potential energy of an information particle 

je  can be immediately deduced.  
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From (11) the information force on je can be evaluated. 
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It can be shown that this is equivalent to  
 

)()(ˆ)1()( 2
2

jjej eFefeF −−= α
α α             (13) 

 

where the quadratic force is defined as  
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This clarifies the relationship between the α-force and 
the quadratic force.  Obviously, the quadratic force 
expression in (14) reduces to the exact same definition 
in [Principe et al] when Gaussian kernels are assumed.  
Now from (13) and (14), it is possible to define the 
force on je  due to ie . 
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where  
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This formulation indicates that the quadratic force 
can be regarded as the foundation for all other 
information forces.  Forces of any order are the scaled 
version of the quadratic force, with the scaling factor 
being a power of the probability density of the particle 
that the force acts upon.  For 2>α , the force on a 
particle increases with increased probability density, 
while it decreases for 2<α .   

 
 

5. QUADRATIC ENTROPY AND MSE 
 
In this section, we will show that under quite 

restrictive conditions MSE is a special case of the 
quadratic entropy in the limit.  Since minimizing the 
quadratic entropy is equivalent to maximizing the 
quadratic information potential, we focus on this 



 

 

quantity.  The quadratic information potential estimated 
with Gaussian kernels is given by (7).  Assuming 1-dim 
error samples for simplicity, if the kernel size, which 
corresponds to the standard deviation in this case, is 
chosen to be very large, then the Gaussian kernel can be 
approximated by its first order Taylor expansion at zero. 
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Substituting this approximation in (7), a large-kernel-
size approximation to the quadratic information 
potential is obtained, whose terms can be rearranged to 
yield the equivalence with MSE. 
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Thus, we conclude that under the following listed 
conditions the minimization of quadrtic entropy is 
equivalent to the minimization of MSE. 
i. The first order Taylor expansion around zero of the 

kernel must be quadratic in its argument with a 
negative coefficient. 

ii. The kernel size must be chosen large enough to 
have a valid first order approximation. 

iii. Sample mean of the error must be zero.  
(Introducing a bias term at the output of the 
function approximator and setting it to yield zero 
error mean at each step can achieve this.) 

 The equivalence is also valid if the variance/entropy 
of the error is small, so that the difference between the 
error samples is much smaller than the kernel size used.  
This occurs if the topology is sufficient to approximate 
the desired function very accurately.  An example is the 
equalization of an FIR channel, where a sufficiently 
long FIR equalizer can practically eliminate the inter-
symbol interference.  We have shown experimentally 
that both criteria provide very close solutions for the 
FIR equalizer [Ignacio]. 

 
 

6. KERNEL AND SMOOTHING 
 

The kernel size σ is a very important parameter if 
efficiently exploited.  Parzen windowing is a biased 
estimator of the pdf and in determining the kernel size, a 

trade-off has to be made between low bias and low 
variance.  Once a suitable value is set, training can be 
carried out using that fixed kernel size.  However, it 
turns out that there is a way to utilize the kernel size as a 
means of avoiding local optimum solutions in training.  
The following is the relation between the information 
potential estimates using an arbitrary kernel size and a 
unit kernel, in n-dim error space. 
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The change in kernel size causes a scaling of the 
cost function accompanied by dilation.  Thus, all the 
points, except for the origin, including all local extremes 
move radially away from the origin as the kernel size 
increases.  This leads to a global optimization procedure 
for the training process.  Starting with a large kernel 
size, and then slowly decreasing it towards a 
predetermined suitable value, the local solutions may be 
avoided.  Hence, global optimization will be achieved 
using a gradient descent approach. 

In addition to the dilation property in the finite 
sample case discussed above, there is another interesting 
property that the Parzen windowing brings about.  We 
have shown that in the limit as the number of samples 
approach to infinity, the kernel pdf estimation converges 
to a convolution operation, which in turn is strongly 
related to the well-known convolution smoothing 
method of global optimization [Rubinstein].   
 

 
7. GRADIENT BASED ADAPTATION 

ALGORITHM USING ENTROPY 
 
Suppose we are training an adaptive system to 

approximate an unknown function using the information 
in the training data, as depicted in Fig. 1.  We define the 
error as the difference between the desired output and 
the output of the mapper to a corresponding input.  The 
optimization criterion will be the minimization of error 
entropy. 

 
 
 
 
 
 
 
 

 
Figure 1. Supervised Adaptive System Training 

 
The training process will be carried out by 

maximizing the information potential for α>1.  We 
encounter the information forces in the computation of 
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the gradient of the information potential.  The gradient 
consists of the information force and the sensitivity 
terms as seen below in (20). 
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Explicitely, written, the gradient of the information 
potential with respect to the weights is  
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where the sensitivity of the output for an MLP can be 
computed by backpropogation [Rumelhart].   

Investigating the relationship between the gradient of 
the order-α information potential and the quadratic 
information potential is of theoretical interest.  The 
expression in (21) can be rearranged to yield 

 

� ∂
∂

−=
∂

∂ −

j

j
je w

eV
ef

w
eV )(ˆ

)(ˆ)1(
)(ˆ

22αα α      (22) 

 

Clearly, in the order-α case, the total gradient is a 
weighted mixture of the individual gradients created by 
each particle where the mixture coefficients are the 
powers of the pdf estimate of the corresponding particle.  
This property directly translates from what was 
observed for the information forces. 

Gradient adaptation, although not the only 
possibility, is preferred due to its simplicity and 
efficient convergence characteristics [Haykin].  
Alternative optimization approaches may also be used, 
global or otherwise [Aarts,Morejon].   
 

 
8. MLP TRAINING EXAMPLE 

 
In this section, we present results for an MLP 

training example which uses the entropy minimization 
to achieve single-step prediction of Mackey-Glass (MG) 
series [Kaplan].  The time series is generated with delay 
parameter τ=30.  MLP input vector consists of 6 
consecutive samples of the MG time series, thus a 
TDNN.  A training set of 200 input-output pairs is 
prepared.  There are 6 neurons in the only hidden layer 
with biases and tanh nonlinearities, and a single, linear 
output neuron.  The bias value of the output neuron is 
set to match the means of the desired and the actual 
outputs. In our simulations we used fixed values of α 
and σ, in order to investigate their effect on the 
performance.  Each MLP is trained starting from a set of 

predetermined 100 initial weights generated by a 
uniform distribution in the interval [-1,1].  Then, the 
best solution among the 100 candidates was selected. 
 In the testing process, the errors of the MLPs for 
each value of α and σ were evaluated on an 
independently generated 10,000-point test set.  Parzen 
windowing with Gaussian kernels (σ=0.001) is applied 
to estimate the error pdfs.   
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Figure 2.  Error pdfs for test data with α=1.01,1.5,2,3  
 
 From Fig. 2, we observe that MLPs trained with 
smaller kernel sizes produce practically the same 
relatively more spiky solution, whereas the MLPs 
trained with the largest kernel size yield a widely 
distributed error pdf, especially for the case α=1.01.  In 
addition, the error pdf becomes closer to the desired δ-
function when α is larger.  Notice that the peak value 
achieved by the error pdf of the MLP trained with α=3, 
and σ=0.01 is the highest among all error pdfs. 

 
 

9.  CONCLUSIONS 
 
Renyi’s entropy of the error was previously 

proposed as an alternative to MSE, and was shown to be 
advantageous.  At that time, the main focus was on the 
special case of quadratic entropy with Gaussian kernels 
due to analytical difficulties encountered otherwise.  
Recently, we proposed an alternative nonparametric 
estimator for Renyi’s entropy that allows us to use any 
suitable kernel function and entropy order.  In this 
paper, we have demonstrated the equivalence between 
the old and new estimators for Gaussian kernels and 
quadratic entropy.  In addition, we have shown that 
MSE is in fact a special case of the proposed quadratic 
entropy criterion in the limit as the kernel size goes to 
infinity.  We gave the definitions for order-α 
information force and potential, and illustrated that they 
are closely linked to their quadratic counterparts.  
Interestingly, quadratic entropy and all related quantities 
are the most advantageous in terms of computational 



 

 

savings.  Another very important aspect of the proposed 
entropy criterion is its relationship with the convolution 
smoothing method.  We have demonstrated here the 
effect of the kernel size on the criterion.   It was noted 
that by starting with a large kernel size and properly 
decreasing it may help avoid local-optimum solutions 
even with gradient based methods.   

Finally, we have applied the criterion to the problem 
of MLP training in a short-term chaotic time series 
prediction problem.  In this, we investigated the 
performance of the solutions generated by MLPs that 
are trained using different orders of entropy and 
different kernel sizes.  Simulation results suggested that, 
smaller kernel sizes produced better solutions in terms 
of generalizability, however, there is not enough 
evidence yet to be certain about how the entropy order 
affects the performance of the resulting system.   
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