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4.1 Introduction 

Systems theory is a well-established and mature area of engineering research, where many strong 

general mathematical results are available. Especially the analysis of linear identification and 

control systems have been pursued by many researchers leading to a complete understanding of 

various mechanisms that are effective in the stability, controllability and observability of these. 

Due to the availability of such an extensive knowledge base about linear systems, modern 

industrial control applications are still typically designed utilising the results from linear control 

systems theory. Nevertheless, academic research has been concentrating around problems 

involving the stability, identification and control of nonlinear dynamical systems in the last few 

decades. These efforts have now also matured into a broad theory of nonlinear systems, their 

identification and control. Initial efforts in this area pursued parametric approaches, inspired by 

the established linear systems theory, where the system dynamical equations are generally 

assumed to be known from physical principles, possibly with some uncertainty in the values of 

certain parameters. In this framework, the system identification and system control problems are 

decoupled, therefore can be solved sequentially. More recently, adaptive system identification 

and control methodologies have also been investigated, once again leading to a very good 

understanding of the adaptation in linear systems and a satisfactorily general insight to 
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adaptation in nonlinear control systems. The latter problem, however, is implicitly extremely 

difficult to tackle and although nice mathematical results are obtained, practicality of these 

nonlinear techniques is yet difficult to achieve. 

 Control theory deals with the problem of manipulating the behavior of dynamical systems to 

satisfy certain desired outputs from the system. Classically, as mentioned above, the design 

procedure will follow the system identification and controller selection stages in the parametric 

approach to system modeling and control. In the case of traditional identification based on 

models derived from physical principles, the data are used to estimate the unknown parameters 

[1,2], whereas modern approaches stemming from the advances in neural network theory 

introduce black-box function approximation schemes in parts of the models [3-7]. The neural 

network modeling capabilities may be further enhanced using multiple such sub-models in the 

context of switching between adaptive models, as we will present in more detail in this chapter, 

to obtain closed-loop control systems that enhance transient behavior and cope better with 

modeling uncertainties and sudden model changes [8,9]. Following the system identification 

stage, depending on the modeling approach taken, the controller is designed typically using 

classical techniques based on linear system theory, such as gain scheduling [10], switching 

between multiple fixed or adaptive controllers [11,12], as well as classical or neural-network-

based nonlinear techniques [13-15]. 

 A large class of real-world systems can be reasonably approximated by nonlinear, time-

invariant mathematical models. Therefore, our discussions here will focus on this class of 

systems, although we will briefly describe how to extend the presented approaches to the more 

general nonlinear time-varying system scenarios. Note that, however, the latter is an extremely 

difficult problem to solve. Even the global modeling of time-invariant nonlinear systems and 
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designing corresponding controllers is itself a daunting task, let alone dealing successfully with 

time-variability in cases except where the variations are slow so that available adaptation tools 

can cope with the task of tracking the changing models. 

 A principle that is adopted with great enthusiasm in the statistical function approximation 

literature is the divide-and-conquer approach that dictates solving complicated problems by 

breaking them up into smaller and easier pieces that can be managed by simpler topologies. The 

method presented here follows along the lines of this principle. Therefore, conceptually, this 

modeling technique can be regarded as a piece-wise modeling approach, where the pieces are 

then patched together to form an approximate but successful global model. Specifically, when 

each of the model pieces are selected to be linear, the resulting model is a piece-wise linear 

dynamical approximation to the globally nonlinear dynamical system. The advantages of such a 

partitioning approach are three-fold: system identification complexity is reduced significantly 

due to the scaling down of the optimisation problem from one large task to multiple small and 

simple tasks, the piece-wise model easily scales up to encompass more volume in the state-space 

of the dynamical system by the addition of new patches as data from previously unseen portions 

of the state-space is acquired and the design of a control system for the nonlinear system can be 

reduced to the design of multiple simple and local controllers among which switching or 

cooperation is possible to generate a single control command to the actual plant. Especially with 

the selection of local linear dynamical models, the global nonlinear controller design reduces to 

the much simpler problem of designing multiple linear controllers for linear systems, a problem 

for which there are many extremely strong tools available in the linear control systems literature 

[16-18]. 
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 In the local modeling approach, there are two possibilities for utilising the individual local 

models to generate a single global value: select one model at a given time (winner-take-all), or 

take a weighted combination of the models (mixture-of-experts). Both approaches will be 

discussed in detail in the following sections. In particular, the winner-take-all approach will 

make explicit use of the self-organising maps (SOM) [19] in order to select which model-

controller pair to switch to at every time instant (as opposed to the output-tracking-error-based 

switching criterion proposed by Narendra and co-workers [8,11]) and the mixture-of-experts 

approach will utilise the finite Gaussian mixture models (GMM) for a statistical interpretation of 

the local model contributions through the components of the mixture density model. Although 

the output-error approach is also commonly utilised in switching expert systems, it requires 

adjusting switching criterion parameters in noisy situations or for different systems, whereas in 

the SOM-based switching modality, these considerations are automatically taken care of in the 

SOM-training phase through the statistical interpretation of the data by the self organisation 

algorithm. The trade-off in this is the requirement that the multi-dimensional state space of the 

system is sufficiently covered by the SOM, whereas the output error approach operates in the 

lower dimensional output space. In addition, the SOM can be trained to classify the current state 

of the system directly from an input vector that is representative of this state, rather than the 

indirect measure of output-error. Consequently, the model selection sequence obtained using a 

SOM is expected to be more in tune with the actual state space transition that the dynamical 

system experiences. The GMM-based models will also be partitioned based on the same 

representative state vector as the SOM, consisting of past values of the plant’s input and output, 

leading to the questions of validity and accuracy of such state representations. 
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 It is well known that linear dynamical systems expressed by an observable state-space 

equation set can be equivalently described by autoregressive moving average (ARMA) 

difference equations (or differential equations in continuous time), which are essentially 

recursive expressions for the current output of the system in terms of its past inputs and outputs. 

The existence of such input-output recursive representations for nonlinear systems is also 

dependent on the extended definitions of observability for nonlinear systems. Results 

demonstrate that a wide class of nonlinear systems, called generically observable systems, also 

possess such nonlinear ARMA (NARMA) models that are valid at least locally and sometimes 

even globally, in the state space [2,20-23]. In summary, we can conclude that the behavior of 

nonlinear dynamical systems can at least locally be described well by NARMA equations, which 

is of crucial importance in the case of state-space reconstruction for dynamical systems where 

the internal state variables are not accessible. In such cases, the time-delay embedding method 

[24] has to be used in order to create local NARMA or ARMA models that are representative of 

the system dynamics. 

  

4.2 Motivation for local linear modeling and time-delay embedding 

 Consider, without loss of generality, a single-input single output (SISO) nonlinear time-

invariant dynamical system with state vector , input nℜ∈x ℜ∈u  and output  with the 

following set of state equations and output mapping: 

ℜ∈y

  (4.1) 
)(

),(1

kk

kkk
hy

u
x

xfx
=
=+

Notice that the consecutive outputs are (following the reasoning in [3] and with  denoting 

composite functions): 

o

 173



  (4.2) 

),...,,,(),(

),(),(
)()(

211

21

1

−++−+

+

==

==
==

nkkkknkknk

kkkkk

kkk

uuuuffhy

uufhy
hy

xx

xx
xx

φ

φ
φ

oLoo

M

o

Defining  and [ ]Tnkk
n
k yy 1−+= Ly [ ]Tnkk

n
k uu 2

1
−+

− = Lu

),( 1−n
kk ux

, (4.2) can be collected in a 

vector-valued function form as . =Φn
ky

Implicit Function Theorem [24]. Let f be a C1 mapping of an open set  into  

such that f(a,b)=0 for some point (a,b) in E. Let f

mnE +ℜ⊂ nℜ

x(x,y) denote the Jacobian of f with 

respect to x at the point (x,y) in E. If fx(a,b) is invertible, then there exists an open set 

 and W  with (a,b)∈U and b∈W such that to every y∈W there corresponds 

a unique x satisfying f(x,y)=0, (x,y)∈U. If this x is defined to be g(y), then g∈ C

mnU +ℜ⊂ mℜ⊂

nℜ

1 and is a 

mapping of W into , g(b)=a and f(g(y),y)=0 for all y∈W. 

The Implicit Function Theorem basically states that the condition of local invertibility for a 

nonlinear function is that its Jacobian is locally nonsingular. Employing this theorem on the 

vector-valued function representation of (4.2), we conclude that if the Jacobian  is 

nonsingular at a stationary point in the state space of the unforced system, then x

xΦ ∂∂ /

k can be 

expressed locally in terms of y  and u . However, since by definition xn
k

1−n
k k+n depends on the 

inputs uk,…,uk+n-1 and the initial state xk, there exists a unique local nonlinear input-output 

mapping of the form 

  (4.3) ),...,,,,...,,( 11111 +−−+−−+ = nkkknkkkk uuuyyyFy

valid in an open set in the state space encompassing the stationary point of linearisation. The 

same conclusion result could also be obtained with the brute force method of linearising the 

nonlinear dynamics around a stationary point in the state space and defining a state 

transformation from the actual state vector to incremental changes in the states, such that the 
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system is locally represented by an ARMA process with state-dependent coefficients, which 

essentially becomes a NARMA equation as in (4.3). Conversely, it is possible to express the 

local NARMA process of (4.3) by a set of switching local ARMA processes, where each 

linearisation is carried out at the current operating point. Effectively, at a given operating point 

, the approximate ARMA process is ),...,,...(),( *
1
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where the model output is a linear combination of the reconstructed state variables plus a bias 

term. For smoothly varying nonlinear dynamical systems, this ARMA model can further be 

accurately approximated by a purely linear combination of the reconstructed state variables as 

, where the bias term is implicitly embedded in the local model coefficient 

vectors a and b through the least squares type consideration of the approximation error and the 

mean state vector value in the neighborhood of approximation. This latter approximation is 

necessary when it is desired to design a local linear linear controller for the local linear ARMA 

model. The elimination of the bias term makes the local model truly linear in terms of its inputs 

and outputs, not just linear in its coefficients. 

n
k

Tn
k

T
ky ubya ˆˆˆ 1 +=+

 In this piece-wise linear approximation of the original nonlinear system, the coefficients of 

the locally effective ARMA model are determined by the current state of the nonlinear system, 

which is expressed in terms of the past values of the system input and output. This is an 

important observation, since in general, if the mathematical model of the plant is not known, its 

physically meaningful internal state variables are not accessible either. Under such conditions, 
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the past values of the input and the output signals can be utilised to generate a representative 

state vector to identify the local behavior of the system. 

 In chaos theory and nonlinear time-series analysis, this method of reconstructing a state 

vector is referred to as time-delay embedding and there are strong theoretical results that 

demonstrate the mathematical validity of this approach for the case of autonomous nonlinear 

systems [22,23]. In particular, Takens’ embedding theorem states, in plain words, that there 

exists an invertible (i.e. a one-to-one and onto) between the original state dynamics and the 

reconstructed state dynamics provided that the embedding dimension (the number of lags in the 

reconstructed state vector) is sufficiently large (specifically greater than two times the original 

state dimension). A similar result was also demonstrated by Aeyels that stated almost any 

autonomous system of the form )(),( xxfx hy ==&  is generically observable if 2n+1 samples of the 

output is taken in a manner similar to (4.2) [20]. 

 These theoretical results on the local NARMA representations combined with the 

observability of nonlinear systems and the utility of time-delay embedding reconstructions of the 

state vector allow the construction of a piece-wise linear dynamical model approximation for a 

nonlinear system, which can be determined and optimised completely from input-output data 

collected from the original system. The literature is rich in multiple model approaches for 

nonlinear modeling [1,25], where the general consensus is that local modeling typically 

outperforms global modeling with a single highly complicated neural network in input-output 

modeling scenarios [2,26-30], despite the intrinsic simplicity and the input-output delay 

embedding approach has been adopted commonly based on results from nonlinear time-series 

analysis, such as Takens’ theorem and its extensions [28]. A question of practical importance in 
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this black-box input-output modeling approach is how to choose the number of embedding lags 

for both the input and the output. The next section deals with this question. 

 The motivation presented above mainly dealt with noise-free deterministic dynamical 

systems, whereas in practice, the available data is certainly noisy. From a mathematical 

perspective the suitability of the local modeling approach is justified by the above discussion. 

The practical aspects when noisy data is utilised is going to be investigated in the following 

sections whenever necessary. 

 

4.3 Selecting the embedding dimension 

 If the number of physical dynamical states of the actual nonlinear system is known a priori, 

one can select the length of the embedding tap-delay lines for the input and output in accordance 

with the theoretical results by Takens and Aeyels. For complete practicality of the proposed local 

linear modeling approach for unknown systems, however, a truly data-driven methodology for 

determining the embedding dimensions for the input and output signals is required. 

 The problem of determining accurate input-output models from training data generated by 

the system has been addressed by many researchers [1-3,7,9,30,31], where the selection of the 

number of lags for the input and output signals (which is essentially a question of model-order 

selection) has always been an issue of practical importance. A useful solution to determine the 

embedding dimensions for input-output models is outlined by He and Asada [32], where the 

model order is determined based on the Lipschitz index calculated using the training data and the 

corresponding optimal model outputs for various embedding dimensions. 

1. Select candidate output and input embedding dimensions n and m. 
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2. From now on consider all past values of input and output as input variables 

x1,…,xn,xn+1,…,xn+m. Let the model output be denoted by y. Denote the ith input vector 

sample by xi and the output by yi, i=1,…,N. 

3. For every pair of samples evaluate the Lipschitz quotient: qij=|yi-yj|/||xi-xj||, i≠j, i,j=1,…,N. 

4. Let q(n+m)(k) denote the kth largest quotient qij.  

5. Evaluate the Lipschitz index: 
pp

k
mnmn kqnq

/1

1
)()( )( 






= ∏ =

++ , where p is an integer in the 

range [0.01N,0.02N]. 

6. Go to step 1 and evaluate the Lipschitz index for a different set of embedding dimensions. 

The appropriate values of embedding dimensions will be indicated by the convergence 

index of the decreasing Lipschitz index as the embedding dimensions are increased one by 

one. 

 According to the theory, the appropriate embedding dimension pair for the input and the 

output is indicated by the convergence of the index. In other words, the embedding dimension, 

where the index stops decreasing (significantly), is to be selected as the model order. 

 

4.4 Determining the local linear models 

 The local linear modeling approach can be broken into two consecutive parts: 

clustering/quantising the reconstructed state vector  adaptively using a 

statistically sound approach and optimising the local linear models corresponding to each cluster 

of samples with least squares (or some other criterion) using data from only that cluster.

TnT
k

nT
k

r
k ][ uyx =

1 There 

                                                 

1 Although we focus on local linear modeling in this chapter, the principles and methodologies outlined here can 

immediately be extended to local nonlinear modeling. In fact, we will briefly investigate this latter choice later. 
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are many possible techniques for tackling each of these individual problems available in the 

literature. For example, the first step (data clustering) can be achieved by using a standard 

clustering algorithm (such as k-means clustering [23]) or vector quantisation methods [33], 

numerous variants of self organising maps (referred to as SOM) [19], or probability density 

mixture models (specifically the Gaussian Mixture Models – GMM) [34]; the second step 

(model optimisation) can be achieved using the analytical least squares solution (also referred to 

as the Wiener solution) [35], the least-mean-squares (LMS) algorithm [36], the recursive least 

squares algorithm [35], or the Kalman filter [37] if the mean-squared-error (MSE) is the 

optimality criterion of choice.2 

 In this section, we will focus on two of the clustering methods listed above: SOM and GMM. 

Based on which approach is selected in modeling, the principle behind the local linear models 

will be either competitive (for the SOM) or cooperative (for the GMM). Later on, the controller 

designs will also be slightly different due to this difference in the nature of the two approaches. 

In any case, the local model representation regimes will be selected optimally according to the 

criteria that these clustering methods utilise marking the main difference of the proposed 

adaptive local linear modeling approach from the standard gain-scheduling-like traditional 

approaches where the operating points of these local linear models are typically selected to be 

the stationary points of the state dynamics. In the case of completely unknown dynamics, this 

option is out of the question any way. Therefore, the methods presented here can be successfully 

applied both to cases where the actual state vector is accessible and where it is not available (so 

that input-output modeling is required). 

 

                                                 

2 Alternative optimality criteria include other moments [38] and entropy [39] of the modeling error. 
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4.4.1 Clustering the Reconstructed State Vector Using Self-Organising Maps 

 Off-Line Training Phase: Suppose that input-output training data pairs of the form 

{(u1,y1),…,(uN,yN)}, where u is the input signal and y is the output signal, is available from a 

SISO system for system identification. Under the conditions stated earlier, a nonlinear time-

invariant dynamical system can be approximated locally by a linear ARMA system of the form3 

  (4.5) ccububyayay m
k

Tn
k

T
mkmknknkk ++=++++++= −−−−−− 111111 ...... ubya

The reconstructed state vector [ ]Tmkknkk
mn

k uuyy −−−−= LL 11
,x  can be adaptively achieved 

using a SOM with any topology of choice (triangular or rectangular grids are possible). The 

SOM consists of an array of neurons with weight vectors wi that are trained competitively on its 

input vectors .mn
k

,x 4 In training, these input vector samples are presented to the SOM one at a 

time in multiple epochs and preferably in each epoch, the presentation order of the samples is 

randomly shuffled to prevent memorising and/or oscillatory learning behavior. 

 At every iteration, the winner neuron is selected as the one that minimises instantaneously 

the Mahalanobis distance  between the weight vector and the 

current training sample. Then the winner weight and its topological neighbors are updated using 

the following stochastic incremental learning rules [19], where w

)()(),( 1
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T
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 and wn denote the winner and 

neighbor neuron weights, respectively: 
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3 The bias term c is required for mathematical consistency, however, in practice it is optional and can be removed 

due to reasons discussed before. 

4 The superscript n,m will be dropped from now on whenever unnecessary. 
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In the Mahalonobis distance, the scaling matrix Σ can be selected as the input covariance to 

emphasize various directions in the updates in accordance with the data structure, or it can be set 

to identity. The neighborhood function h(.,σ) is a monotonically decreasing function in its first 

argument and it is unity when evaluated at zero and zero when evaluated at infinity. This allows 

the neighboring neurons to be updated proportionally to their distance to the instantaneous 

winner. The neighborhood radius σ is slowly annealed as well as the learning rate η. The 

neighborhood radius is initially set such that most of the network is included in this region, but in 

time, as the neurons start specializing in their distinct regions of quantization, this radius 

decreases to small enough values to cover only the winner neuron effectively. Typically, the 

neighborhood function is selected as a one-sided Gaussian function with the standard deviation 

parameter controlling the neighborhood radius. Both the radius and the learning rate can be 

annealed linearly or exponentially in terms of iterations or epochs. 

 The trained SOM can be regarded as a vector quantizer with the special topology preserving 

property. In particular, the SOM quantizes its input space while preserving the topological 

structure of the manifold that the samples come from, resulting in strong neighborhood 

relationships between the neurons; neighboring input vectors are mapped to neighboring 

neurons, thus in the next step of local linear modeling, neighboring models will be structurally 

similar. The input space of the SOM, which is equivalently the reconstructed state space of the 

system under consideration, is partitioned into smaller non-overlapping sets that are typically 

illustrated by a Voronoi diagram. The input samples {( , which are in the i)},(),...,, 11 ii iNiNii yy xx th 

Voronoi region, are associated with the corresponding neuron with weight vector wi, where Ni is 

the number of training samples in this region. In this local modeling scheme, besides the SOM 

weight vectors, each neuron also has a vector of local linear model coefficients associated with 
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it, denoted by ai and bi separately for the output and input portions of the reconstructed state 

vector respectively. These models can be optimised using the training data clustered to the ith 

Voronoi region and the MSE criterion. This results in the following least-squares optimal local 

linear model coefficients [35,36]:5 
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and the input-desired crosscorrelation vector blocks are estimated from samples using 
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Finally, the output of the ith local linear model with the optimised coefficients is given by 

. More generally, introducing the model output weighting term pk
T
i

T
iky xba ][ˆ = ik, the overall 

local linear model system output is expressed as a switching (weighted) combination of the M 

individual model outputs: 
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For hard competition, the weighting coefficients pik take only the values 0 or 1 at every time 

instant k. The selection completely depends on the ith neuron winning for input vector xk. A 

simple modification that one can introduce to the SOM-based local linear models to make the 

overall model cooperative rather than competitive is to allow other weighting values for the 
                                                 

5 If the bias term is included in the linear model, then the Wiener solution in (7) must be modified accordingly. 
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models. For example, a weighted average type combination based on the distances of the current 

sample to the neuron weights would have 
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where a monotonically increasing emphasis function f(.,σ) is combined with the Mahalonobis 

distance d(.,.). The choice of a linear emphasis function would exactly be weighted averaging 

based on Mahalonobis distances. For clarity, the overall SOM-based local modeling topology is 

illustrated in Figure 4.1. 

 On-Line Training Phase: In most cases, a batch-training phase as described above is 

beneficial for control system performance on the actual system. The on-line training procedure, 

although it could be employed immediately to the unknown system with random initialisation of 

all the weights and coefficients to be optimised, could require a large number of samples and/or 

time to become sufficiently accurate, while in the mean time the system operates under an 

improper controller system. Nevertheless, the on-line training algorithm presented here could be 

especially useful in fine-tuning the existing models or introducing additional local models to the 

archive whenever modeling performance of the existing system drops below acceptable levels. In 

addition, for identifying time-varying systems, the local models can be continuously adapted 

using on-line data. For only fine-tuning of the existing models, one only needs to continue 

updating the SOM weights as well as the local linear model coefficients on a sample-by-sample 

basis in real time. The SOM weights can be continued to be updated using the original update 

rules given in (4.6). The local linear model coefficients, however, must be updated by one of the 
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many existing on-line linear model weight update rules from the literature. These on-line training 

rules for linear models include LMS and RLS (for recursive least squares) [35].6 

 When using LMS or RLS, only the coefficients of the linear model associated with the 

instantaneous winner neuron (whose weight vector is updated recently using the SOM learning 

algorithm) are updated. The LMS update rule for the coefficients of the winner model (assuming 

neuron i is the winner) is given by 

  (4.12) kk
T
ikii y xxccc )( −+← µ

where µ is the LMS step size. Since LMS uses stochastic gradient updates for the model 

coefficients, it exhibits a misadjustment associated with the power of the inputs and the step size. 

However, its computational complexity is very low, suitable for fast real-time applications. On 

the other hand, RLS is a fixed-point algorithm that can track the analytical Wiener solution via 

sample-by sample updates. The drawback is its increased complexity compared to LMS. The 

coefficient updates for the winner model according to RLS is given by the following iterations 
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where the input autocorrelation matrix and weight vectors are initialised to Ri=δ -1I, ci=0, δ being 

a small positive value. 

                                                 

6 These update rules can be extended to the updating of nonlinear model weights [40]. The extension of LMS is 

trivial. The RLS algorithm is, in principle an implementation of the Kalman filter considering the adaptive weights 

as states. Hence, extensions to nonlinear systems (such as neural networks) are achieved through the formulation of 

the learning problem as an extended Kalman filtering problem [41]. 
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 Besides MSE, alternative model optimisation criteria such as alternative lags of error 

correlation [40], higher order error moments [36], or error entropy [38], can be utilised. Similar 

on-line update algorithms can be derived for these alternative criteria. 

 In some situations, simply fine-tuning of existing local models might not be sufficient to 

meet performance requirements in a sustained manner. Especially if, in actual operation, 

situations that are not encompassed in the training data set are encountered then a new local 

model might need to be introduced to the system of models. This could be achieved by utilising a 

growing SOM (GSOM) [41]. The most suitable grid structure for the GSOM is triangular. The 

neuron weights are still updated using (4.6). Contrary to static a SOM, in the GSOM, once in a 

while (e.g., at the end of every epoch), a new neuron is inserted (generated) in the weight space 

to the midpoint of line segment connecting the neuron with the highest winning frequency and 

the neuron farthest to it. A similar neuron-killing criterion can be developed to eliminate 

infrequently activated neurons. This procedure is repeated until a balanced distribution of input 

samples per neuron is obtained in the Voronoi diagram. In the process of generating and killing 

neurons, the triangular topology of the SOM must be preserved, so the new neighborhood 

connections must be selected accordingly. 

 

4.4.2  Clustering the Reconstructed State Vector Using Gaussian Mixture Models 

 Off-Line Training Phase: Suppose that input-output training data pairs of the form 

{(u1,y1),…,(uN,yN)}, where u is the input signal and y is the output signal, is available from a 

SISO system for system identification. The linear models described by (4.5) are still valid 

locally. In contrast to the SOM clustering of the reconstructed state vector 

, which trains the cluster centers (neurons) competitively, [ T
mkknkk

mn
k uuyy −−−−= LL 11

,x ]
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the Gaussian mixture model considers the possibility of multiple modes generating the same 

state. In particular, it is assumed that the probability distribution of the state vector is given by 

  (4.14) ∑
=

=
M

i
iikik Gp

1
),;()( Σµxx α

where G(x;µ , Σ) is a multivariate Gaussian density with mean µ and covariance Σ. The 

coefficient αi denotes the probability of occurrence of the ith mode in the GMM, which in turn 

reflects the probability of the corresponding local model being effective. Given the training data 

and once the state vectors are reconstructed using embedding, the maximum likelihood solution 

for the parameters αi, µi and Σi can be determined using the expectation maximisation (EM) 

algorithm [34]. The EM algorithm can be outlined as follows:7 

1.E-Step: Compute the expectation of the log-likelihood of the complete data conditioned by 

the observed samples assuming the most recent solution for the mixture parameters, which 

is given by Q , where the parameter vector is defined to 

include all means, covariances and weights in the mixture model: 

. 

[∑= k tkt pE ϑϑϑϑ ,|)|(log)|( xv

MMM vecvec )()( 11 ΣΣµµ LL

]

[ ]T1 L ααϑ =

2.M-Step: Update parameter estimates to 1+tϑ , which is the maximiser of )|( tQ ϑϑ . 

 Similar to the SOM-based modeling, in GMM-based local linear models, each Gaussian 

mode has a vector of local linear model coefficients associated with it, denoted by ai and bi, 

again, for output and input portions of the reconstructed state vector, respectively. The output of 

the ith local linear model is given by . The overall model output is a weighted k
T
i

T
iky xba ][ˆ =

                                                 

7 The EM algorithm is essentially a fixed-point update rule for the mixture density parameters to maximize the 

likelihood of the data. 
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combination of the M individual outputs as in (4.10), , where ∑ =
=

M
i k

T
iikk py

1
ˆ xc

),;( iikiik Gp Σµxα= . The linear model coefficients can be collectively optimised using a 

modified Wiener solution similar to that in (4.7). The modification involves the model activation 

probabilities, pik and is explicitly given as , where . The input 

autocorrelation matrix and the input-output crosscorrelation vector are defined using the 

modified input vector z .

PRθ 1−=

]T
kx
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 P  (4.15) 

For completeness, the GMM-based local modeling topology, which is similar to the SOM-based 

topology in many aspects, is shown in Figure 4.2. 

 On-Line Training Phase: After the off-line training procedure described above, the GMM-

based model can be put to practice, while small adjustments to the existing parameters and model 

coefficients could be carried out in operation on a sample by-sample basis, although this would 

be computationally extremely expensive. The EM algorithm could still be iterated by including 

one more sample to the probability density evaluations at every time instant. Alternatively, the 

EM algorithm could be replaced by a gradient-based maximum likelihood algorithm that can be 

operated in a stochastic manner (similar to LMS) to update the GMM parameters. Similarly, the 

linear model coefficients can be updated on-line using LMS or RLS with the modified input 

vectors zk [35]. Particularly, the LMS update for the linear model coefficients is 

  (4.16) kz

                                                 

8 Notice that the GMM-based model output is equivalently expressed as  k
T

ky zθ=ˆ
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and the corresponding RLS update is similar to (4.13), but the input and weight vectors are 

modified: 

 

( ) ( )
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 Alternative model optimisation criteria such as alternative lags of error correlation [40], 

higher order error moments [36], or error entropy [38], can also be utilised in this case with 

appropriate modifications. 

 

4.4.3 Extending the Methodology to Local Nonlinear Modeling 

 It was made clear that the general nonlinear system of (4.1) is, in general, approximated 

locally by a NARMA process and we went one step further in the approximation to replace the 

local NARMA approximation by piece-wise linear dynamics. One obvious modification would 

be to allow the local models to be nonlinear input-output dynamical recursive systems, such as 

time-delay neural networks (TDNN) [42]. The TDNN, being an extension of multilayer 

perceptrons (MLP) to time series processing, still possesses the universal approximation 

capabilities of MLPs, however, for the restricted class of dynamical systems with myopic 

memories (i.e., systems where a finite number of past values of the input affect the output, in a 

manner similar to the observability conditions discussed earlier in this chapter) [43,44]. A TDNN 

basically consists of a number of FIR filters in parallel whose outputs are modified by sigmoid 

nonlinearities and then linearly combined by the output layer. More generally,multiple layers of 

nonlinear FIR filter banks can be employed, but it is known that a sufficiently large single hidden 

layer TDNN has enough approximation capability. Training is typically performed via 

backpropagation of MSE [42]. 
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 Another feasible alternative that has a smaller approximation capability, but significantly 

simple to optimise is an Hammerstein dynamical system [45,46]. A Hammerstein structure 

consists of a static nonlinearity that transforms the input followed by a linear dynamical system. 

Once the input nonlinearities are set, the training of the linear dynamical portions is similar to the 

linear models discussed earlier (using the properly modified input autocorrelation matrix in the 

case of MSE optimality criterion). 

 Another possibility in nonlinear modeling is to use Volterra series approximation [47]. 

Volterra series expansion is an extension of Taylor series expansion to dynamical systems. It is 

based on multi-dimensional convolution integrals and the first order Volterra approximation is 

simply a linear convolutive system. Typically, Volterra series approximations are truncated at 

most the third order convolution and separability of the multidimensional impulse responses is 

assumed for simplicity. This, of course, limits the approximation capability of the model in 

addition to the fact that the least squares optimisation of the model coefficients is not necessarily 

simplified; local minima problems still exist. 

 Finally, as a direct consequence of Taylor series expansion, the local linear models can be 

extended to include higher order polynomial factors of delayed values of the input and the 

output. This is the Kolmogorov-Gabor polynomial modeling approach [48]. The number of 

coefficients to be optimised grows combinatorially with the order of the polynomial model, 

creating the main drawback of this approach. 

 

4.5 Designing the local linear controllers 

 An added advantage of the proposed local linear modeling approach is it greatly simplifies 

the design of control systems for nonlinear plants. In general, this is a daunting task and typically 
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practical solutions involve linearisation of the dynamics and then employing well-established 

controller design techniques from linear control systems theory. While designing globally stable 

nonlinear controllers with satisfactory performance at every point in the state space of the closed 

loop control system is extremely difficult and perhaps impossible to achieve especially in the 

case of unknown plant dynamics, the local linear modeling technique presented above, coupled 

with strong controller design techniques from linear control theory [18,49] and recent theoretical 

results on switching control systems [8,11,18], it becomes possible to achieve this goal through 

the use of this much simpler approach of local modeling. The topology of local linear controllers 

that naturally arise from the local linear modeling approach is illustrated in Figure 4.3. 

 

4.5.1 Inverse Error Dynamics Controller Design 

 Once the optimal local linear models have been identified from the training input-output data 

available for system identification, one can use any standard linear controller design techniques 

to meet predefined regulation, stabilisation, or tracking performance goals. Possibilities include 

stabilisation with linear state feedback (the individual ARMA systems can be expressed in 

controllable canonical form to design their corresponding state-space controllers), regulation or 

tracking a time-varying desired output response signal by a PID controller or more generally 

inverse error dynamics controller. In this section, we will focus on the latter, inverse error 

dynamics controller scheme as it includes the PID controllers [50-53] and the exact tracking 

control [3,54], commonly utilised in practice. 

 The principle behind inverse error dynamics controller design is pole placement. Simply, it 

can be described as selecting a set of stable poles for the tracking error signal dynamics. If we 

denote the desired plant output at time k by dk and the actual plant output by yk, then the 
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instantaneous tracking error is simply given by ek = dk - yk.9 The goal of this controller design 

technique is to guarantee that the error signal obeys the following dynamical equation: 

 0... 11211 =++++ +−−+ lklkkk eeee λλλ  (4.18) 

The parameters λ=[λ1,…, λl]T are selected such that the roots of the polynomial 1+λ1x+…λlxl are 

inside the unit circle. This guarantees the global stability of the closed loop control system 

provided that there is no noise, disturbance or modeling error. We will address how to handle 

these unwanted effects by designing the parameter vector appropriately later in this section. Of 

particular interest are inverse error dynamic equations of order 0 to 3. These are explicitly 
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 The exact tracking controller simply solves for the error equation to determine the control 

input necessary for the next error value to be identically zero. This strategy, obviously, is not 

robust to modeling errors or external disturbances such as measurement noise. The first and 

second order error dynamic controllers are easy to design, since analytical expressions of their 

corresponding poles and the associated dynamical behaviors are well understood in linear system 

theory. Especially the second order controller allows the designer to choose both overshoot and 

settling time simultaneously. The third order error dynamics controller is effectively a PID 

controller, since PID controllers, when discretised, allow the designer to place the closed loop 

                                                 

9 Although we are considering discrete-time controller design here, the idea is easily applied to continuous-time 

controller design as well. In addition, generalization to MIMO systems is also achieved simply by defining a vector-

valued error signal, whose entries may or may not interact in the desired error dynamics equation through the use of 

non-diagonal or diagonal coefficient matrices. 
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system poles to any location on a three dimensional manifold in the n-dimensional space of the 

plant dynamics. 

 In the most general case, defined by (4.18), the control input is solved for as follows: 

  (4.20) l
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T
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Recall that explicitly the model output is given by 
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k. Separating these terms from the others in the expression, the model output is 

, where all new variables are 

defined in accordance with the equalities here. Introducing this new expression in (4.20) and 

solving for the input u
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 Notice that we can define ( )( ) i
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by the ith model. With this definition, the control input of (4.21) can be expressed as 
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where , thus (4.21) is equivalent to a weighted average of the individual control input 

suggestions by the M local linear models, which motivates the parallel controller topology shown 

in Figure 4.3. 

1
1

=∑ =

M
i ikα

 For various choices of the error dynamics order and pole locations, the control law will drive 

the tracking closed-loop system in various different ways, while the error signal will always 

satisfy the linear difference equation given in (4.18), which is selected by the designer. An 

 192



alternative controller design technique for both local linear models and local nonlinear models 

(should this be the designer’s choice) is sliding mode control [55], which is essentially a 

nonlinear extension of the linear inverse error dynamics controller design methodology presented 

here. Sliding mode control is also well understood in the nonlinear control literature and it is 

known to be more robust to modeling errors and external disturbances compared to its linear 

counterpart [56]. In the linear case, which is being considered in this chapter, while any stable 

choice of stable poles will work satisfactorily and as expected in no-error/disturbance scenarios, 

in practice, due to the piece-wise nature of the local models and sensor noise, these undesirable 

effects will always corrupt the calculated control input in (4.21). This can be countered by 

carefully selecting the error dynamic pole locations such that the parameter vector λ represents a 

discrete-time filter that eliminates most of the power that is contained in these disturbances. 

Clearly, this requires the a priori knowledge of the statistical characteristics of these 

disturbances. Specifically, one needs the power spectral density information so that the filter can 

be designed to suppress high-energy frequency bands. 

 

4.5.2 Selecting the Error Dynamics Pole Locations to Suppress Disturbance Effects 

 Recall the tracking error dynamical equation in (4.18), , obtained 

using the local linear models with noisy input-output measurements from the system according 

to the prediction equation , where  is the vector of noisy input-output 

measurements, y

l
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k+1 is the true plant output corresponding to the planned control input and nk is 

the overall error term that includes all external disturbances and modeling errors. With this 

notation, also including the measurement noise present in  in nk, the dynamical equation 

that the true tracking error obeys becomes stochastic: e . In effect, this represents k
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an all-poles filter from the noise term nk to ek, whose pole locations are exactly determined by λ. 

Hence, besides the stability constraint, the poles should be located inside the unit circle such that 

the all-pole filter from noise to tracking error that has the transfer function 
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 This observation inspires an alternative linear error dynamics approach to controller design in 

the case of measurement noise, external disturbances and modeling errors. If the equation in 

(4.18) is properly modified, it might be possible to achieve arbitrary transfer functions H(z) from 

noise to tracking error (i.e. transfer functions with zeros and poles simultaneously). To achieve 

this, the error dynamic equation must be extended to further error predictions into the future 

using the model. Specifically, if the following error dynamic equation is used 

  (4.23) 0... 112 =++ +−− lklk ee λλ

then the noise and error terms, again collected in a single nk, drive the following ARMA system 

from the disturbance to the tracking error: 

  (4.24) 

Effectively, this corresponds to the following transfer function from nk to ek: 
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Consequently, the parameter vectors η and λ must be selected to place the zeros and poles of the 

transfer function in (4.25) to maximally filter out noise, using the spectral density information. 

The noise PSD can be estimated from training data, which is collected from the original system 

under noisy measurement conditions. These procedures are out of the scope of this chapter, 

therefore, we will not go into the details. However, spectral estimation is a mature and well-

established research area [57]. 
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4.6 Simulations 

 The local linear modeling and control technique that is presented above has been tested on a 

variety of nonlinear system identification and control problems including chaotic time-series 

prediction, synthetic nonlinear system identification, simplified missile lateral dynamics 

identification and control, NASA Langley transonic wind tunnel and NASA LoFlyte waverider 

aircraft. In this section, we will provide a compilation of simulation and experimental results 

obtained from the application of these principles to the listed problems. 

 

4.6.1 Chaotic Time Series Prediction  

 In this example, we will demonstrate the use of the Lipschitz index for determining the 

model order for a SOM-based local linear modeling system using data generated by the Mackey-

Glass attractor and the Lorenz attractor. The Mackey-Glass chaotic system is governed by the 

following differential equation [58]: 
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γ

γα
ρ −+

−
+=

tx

txtbxtx&  (4.26) 

The delay γ controls the depth of the underlying chaotic motion. The parameters are set to α=0.2, 

β=-0.1 and ρ=10. The system in (4.26) is iterated using the Runge-Kutta-4 integration method 

with a time step of 1 and the signal is downsampled by a factor of 6. An embedding dimension of 

6 and an embedding delay of 2 were determined based on the Lipschitz index and auto-mutual-

information10 of the signal, shown in Figure 4.4. A SOM trained on 1000 samples of input vector 

                                                 

10 Information dimension is a standard method for determining the delay amount in the embedding. The first zero or 

the minimum of the auto-mutual-information [60] is used as the embedding delay. 
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generated as described exhibit the Mackey-Glass attractor’s topology, as shown in Figure 4.5. In 

addition, evaluation of the single step prediction performance using local linear models (LLM) 

attached to the neurons of the SOM demonstrates the high accuracy: a prediction signal-to-error 

ratios (SER) of 33.80dB, 33.39dB and 31.05dB are obtained using a 15x15 rectangular SOM-

LLM, a 40-neuron single layer TDNN and a 100-basis Radial Basis Function (RBF) network, 

respectively. 

 The second chaotic system that will be considered here is the Lorenz attractor. The dynamics 

of this system are governed by the following system of differential equations [58]: 
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where we selected R=28, σ=10 and b=8/3 to obtain chaotic dynamics and the first state as the 

output. Using Runge-Kutta-4 integration with time step 0.01, 9000 samples were generated for 

analysis. Using the Lipschitz index and mutual information analysis (as shown in Figure 4.6) the 

embedding dimension is determined to be 3 and the embedding delay is 2. The first 8000 

samples from the output time-series are used to create the reconstructed state samples, according 

to which the SOM and the local linear models are trained for single step prediction. As seen in 

Figure 4.7, the SOM represents the Lorenz attractor accurately. In addition, the single step 

prediction performance, again evaluated in terms of SER is found to be 53.74dB, 49.23dB and 

50.46dB for the 20x20 SOM-LLM, 100-neuron TDNN and 150-basis RBF network, 

respectively, on the remaining 1000-sample test set. 

 These examples illustrate the modeling capability of the LLM technique on chaotic signal 

prediction, which is a benchmark problem in system identification. In addition, the validity of the 

Lipschitz index for selecting the embedding dimension (i.e., model order) is demonstrated by the 
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successful reconstruction of the two chaotic attractors with the dimensions indicated by this 

index. 

 

4.6.2 Synthetic Nonlinear System Identification 

 The first nonlinear system that is considered here is defined by the following state dynamics 

and output mapping [13]. Since the input is cubed, a finite number of linear models will not have 

good global approximation performance. The approximation will only be valid in the range of 

inputs available in the training data. 
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Input-output training data is generated using white input signal distributed uniformly in [-2,2]. 

Since the input is independent from itself at any delay, the embedding delay is taken to be unity. 

The embedding dimensions for the input and the output are both 2. Consequently, a SOM is 

trained using the input vector [yk,yk-1,uk,uk-1]T and corresponding local linear models are 

optimised using least squares. For a comparison, a local quadratic polynomial Hammerstein 

modeling (LPM) approach is also implemented [46]. The reconstructed state vector for this 

model is [yk,uk, u ]2
k

T. The size of the rectangular grid structure is selected based on the 

generalisation MSE of both models on a validation set. A size of 15x15 is selected for both 

SOMs. The system identification capabilities of the SOM-LLM, the SOM-LPM, a 150-basis 

RBF network and a 13-neuron Focused gamma neural network (FGNN) [59] are compared.11 

Their performances on the test set are respectively 12.73dB, 47.95dB, 43.56dB and 44.59dB. 

                                                 

11 The FGNN is a generalization of the TDNN where the input tap-delay line is replaced by a tap-gamma line. 
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Clearly, the cubic input term is not sufficiently approximated by the selected number of linear 

models and increasing the size of the network results in poor generalisation. As expected, the 

quadratic polynomial is certainly much more effective in approximating the cubic nonlinearity 

locally with the same number of local models. 

 The second nonlinear system that is considered is an FIR filter followed by a static 

nonlinearity defined by: 

  (4.29) )5.0arctan( 11 −+ −= kkk uuy

The system is excited by white input uniform on [-2,2] and system identification was carried out 

using the SOM-LPM topology explained above. The system identification testing results yielded 

SER values of 47.96dB, 49.99dB and 52.30dB for 8-neuron FGNN, 41-basis RBF and 15x15 

SOM-LPM, respectively. 

 

4.6.3 Simplified Lateral Missile Dynamics Identification and Control 

 Under the assumptions of constant mass, zero roll and pitch angles and angular speed, the 

yaw dynamics of a missile can be expressed by [5]: 
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The input is the rudder deflection and it is limited by ±0.5rad. Two local linear models, SOM-

LLM and GMM-LMM were identified using 6000 samples if input-output data, where the 

system is excited by white input uniform on [-0.5,0.5]. A discretisation time step of 0.05s was 

used (making the training set correspond to 300s of flight time). The embedding delays for both 

the input and the output were found to be 2 using the Lipschitz index. The SOM consisted of a 

15x15 rectangular grid, while the GMM had 5 Gaussian modes. Both models were tested on 
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1000 independently generated test samples generated using a random input sequence. The SOM-

LLM and GMM-LLM performances were 31.7dB and 31.0dB in terms of SER, respectively. In 

other modeling problems, it was observed that the GMM-LLM approach required a smaller 

number of linear models, in general, compared to the SOM-LLM approach.  

 In addition, to system identification, local linear PID controllers were designed for both 

models placing the poles of the closed-loop response at 0, 0, 0.05+i0.3 and 0.05-i0.3. For each 

linear model, the PID coefficients are set to these locations by adjusting their corresponding λ 

vectors. The closed-loop regulation and tracking performances are tested by forcing the system 

output to track step changes and smooth sinusoidal changes in the desired output. The tracking 

performances of the SOM-LLM and GMM-LLM based PID controllers are shown in Figure 4.8. 

As a comparison, the tracking performance of a TDNN-based global adaptive model-controller 

pair is also presented in Figure 4.9. Clearly, the local PID controllers outperform the adaptive 

globally nonlinear technique in terms of both overshoot and convergence time. 

 

4.6.4 NASA LoFlyte Waverider Aircraft Identification and Control 

 The NASA LoFlyte is an unmanned aerial vehicle (UAV) designed by Accurate Automation 

Corporation (AAC) and an illustrative picture is shown in Figure 4.10. The LoFlyte program is 

an active test program at the Air Force Flight Test Center of the Edwards Air Force Base with 

the objective of developing the technologies necessary to design, fabricate and flight test a Mach 

5 waverider aircraft [60,61]. The LoFlyte UAV is also used to understand the low speed 

characteristics of a hypersonic shape and to demonstrate several innovative flight control 

technologies. The task of CNEL is to develop modeling and control strategies for LoFlyte based 

solely on input-output data. 
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 According to classical aerodynamics, the flight dynamics of any rigid body are determined 

by movements along or around three body axes: roll, pitch (longitudinal motion) and yaw (lateral 

motion). The elevator δe is mainly responsible for controlling the longitudinal motion state 

variables (pitch angle, θ and pitch rate, q), the rudder δr primarily controls the lateral motion 

state variables (yaw angle, ψ and yaw rate r), the aileron δa mainly controls the roll motion state 

variables (roll angle, φ and roll rate, p). Finally, the throttle δt largely controls the aircraft’s 

longitudinal speed, while in some aircraft, deflectable thrust vectors might allow yaw and roll 

contributions from the engine power. Typically, under certain symmetry assumptions for the 

aircraft body, the state dynamics of the rigid-body aircraft are represented around its center of 

gravity as follows (see [62] or any standard text book on flight dynamics and control): 

  (4.31) 
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In (4.31), u, v, w are the speed components of the aircraft along its body x, y, z axes, respectively. 

Similarly, p, q, r are angular speeds around these axes and φ, θ, ψ are the Euler angles that define 

the rotation matrix between the body coordinate frame and the inertial coordinate frame (e.g., the 

north-east-down system in the case of short-duration, short distance flights within the 

atmosphere, under the flat-earth assumption). The gravity g is along the down direction of the 

inertial frame. The engine power and aerodynamic effects generate the forces Fx, Fy and Fz as 

well as the moments L, M, N. The coefficients m, Ixx, Iyy, Izz and Ixz are the aircraft mass and 

moments of inertia determined by its geometry. 
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 The LoFlyte aircraft is simulated using a software by AAC and is assumed to be the true 

plant. It is assumed that the throttle is constant and state variables p, q, r, u, v, w are available for 

external measurement. The goal of the identification and control problem is to determine local 

linear models from the three inputs (aileron, elevator and rudder) to these six state variables 

(outputs) and to control them in order to track a desired trajectory of flight. 

 Input-output training data is generated using the ACC flight simulator by manually flying the 

model aircraft (with a joystick) to imitate a test flight. The embedding dimensions for both input 

and the output are selected to be 3. SOM-based local linear models are trained from all three 

inputs to all six outputs, quantising the reconstructed state space formed by the vector of delayed 

past output values. In these local models, in order to reduce model complexity, the coupling 

between the state variables is ignored, while all three inputs are still assumed to affect all six 

outputs. In essence, in matrix-vector form, the models are of the form 

  (4.32) ∑∑
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−
=

−+ +=
3

0

3

0
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i
ik

T
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i
ik

T
ik uByAy

where  denotes the vector of outputs (the six measured states) and u denotes the vector of 

inputs (the three deflector angles). Since the output coupling is ignored, A

ŷ

i are diagonal matrices, 

while Bi are full matrices that allow coupling effects from all inputs to all outputs. 

 Using 5000 training samples and a 10x10 rectangular SOM grid, whose size was determined 

according to the validation set performance (see Figure 4.11), the system identification 

performance was found to be 28.12dB, 20.21dB, 28.56dB, 74.73dB, 27.83dB and 37.98dB for 

the six outputs, respectively, in terms of SER on a 1000-sample test set. The same data was used 

in training a global 12-neuron TDNN model, which achieved 27.63dB, 19.57dB, 27.34dB, 

47.56dB, 27.24dB and 36.57dB, respectively for the outputs in the test set. 
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 An order-0 inverse error dynamic controller was designed for p, q and r according to (4.19) 

and (4.21). For comparison, an adaptive TDNN inverse controller based on the TDNN was also 

designed for the aircraft. The performances of the controllers are tested in set-point regulation 

and arbitrary output tracking. The tracking results of both controller systems are presented in 

Figure 4.12 and Figure 4.13 [54]. Clearly the local linear controllers exhibit better overshoot and 

convergence speed characteristics compared to the nonlinear counterpart. 

 

4.6.5 NASA Langley Transonic Wind Tunnel Identification and Control 

 In this final application example, the performance of the proposed local linear modeling and 

control approach in the identification and control of the NASA Langley 16-Foot Transonic 

Tunnel will be presented [12]. This wind tunnel, whose picture is shown in Figure 4.14 to 

provide some perspective, is driven by a simple bang-zero-bang type control input with three 

possible values: -1, 0, +1. The plant output is the Mach number (in the range 0.20 to 1.30) 

achieved around the experimental aircraft model whose dynamics are being studied as shown in 

Figure 4.15. The possible input value sequences of length p were considered, resulting in a total 

of 3p possible sequences. These sequences were partitioned to 9 sets, which were experimentally 

determined to meet performance needs with low computational requirements. Seven of these 

prototype input sequences were 50-samples long, while the remaining two were only 10-samples 

long [12]. For each of these input partitions, the tunnels Mach number responses were clustered 

using a 20-node linear SOM. Finally, each neuron of each SOM has a linear predictor of Mach 

number associated with it, as in the SOM-LLM framework, that evaluates the suitability of each 

input sequence by comparing the predicted Mach number with the desired value in the following 

p time steps (either 50 or 10 depending on the input sequence being evaluated). The control input 

that produces the best Mach number match to the desired is selected and employed. 
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 The identified local linear models and associated controllers are tested on the actual tunnel 

and the performance is compared to that of an expert human operator and the existing controller 

scheme. Typically, acceptable performance is maintaining a Mach number regulation error 

within ±0.003 of the set point while completing an angle-of-attack (α) sweep in as small time as 

possible (due to power considerations). 

 In the first experiment, each controller is required to maintain 0.85 Mach within 

specifications for 15 minutes while an α-sweep is completed. Minimum control activity is a plus. 

The performance of the three controllers is shown in Figure 4.16. 

 The average Mach number of the existing controller, the expert operator and the SOM-LMM 

controller (denoted by PMMSC in the figure) are 0.8497, 0.8500 and 0.8497, respectively, with 

standard deviations 0.001527, 0.001358 and 0.001226. The amount of time these controllers 

were out of tolerance were 46.5s, 34.52s and 33.2s. The L1 norm of the control inputs were 10.6, 

12.33 and 6.33, respectively. Clearly, the local linear controllers outperformed both competitors 

in terms of meeting tolerance bounds with minimum controller activity. 

 As a second test, all controllers were required to track a step-wise changing Mach number set 

point, again with as small as possible control effort, in a 28-minute experiment. The Mach 

number tracking performances of the controllers are shown in Figure 4.17. 

 The existing controller was out of the tolerance bounds for 329s, the expert operator was out 

of tolerance for 310s and the SOM-LLM was out of bounds for 266s. Their respective L1 control 

input norm values for the duration of this experiment were 424.2, 466.2 and 374.3, again 

indicating the superior performance of the proposed local linear control approach. 
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4.7 Conclusions 

 In this chapter, the problem of nonlinear system identification and control system design was 

addressed under the divide-and-conquer principle. This principle motivated the use of multiple 

local models for system identification in order to simplify the modeling task. Especially in the 

case of unknown dynamics, where only input-output data from the plant is available, the 

proposed method is able to approximate the nonlinear dynamics of the plant using a piece-wise 

linear dynamical model that is optimised solely from the available data. Especially when local 

linear models are used as described, it also became possible to design a piece-wise linear 

controller for the plant, whose design is based on the identified model. 

 The questions of the existence and validity of input-output models as described and utilised 

was addressed theoretically using the implicit function inversion theorem that points out the 

observability conditions under which such models are possible to build from input-output data 

alone. The performance of the proposed local linear modeling scheme and the associated local 

linear controllers were tested on a variety of nonlinear dynamical systems including chaotic 

systems, a NASA aircraft and the NASA Langley transonic wind tunnel. 

 It was seen that the designed closed-loop control systems are extremely successful; in fact, in 

the experimental comparisons of performance at the NASA Langley tunnel, the proposed local 

linear controllers outperformed the existing computer controller and a human expert operator. 

These are encouraging results that motivate the use of this modeling and control technique for 

various other control applications. The capabilities of the local linear modeling approach are not 

limited to system identification and control applications. There are a wide range of nonlinear 

signal processing problems, such as magnetic resonance imaging, speech processing and 

 204



computer vision, where the local linear signal processing can be employed to obtain simple but 

successful solutions to difficult nonlinear problems. 
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Figure 4.16. Comparison of the existing controller (left), expert human operator (middle), and the SOM-LLM
controller (right). The achieved Mach numbers for 15 minutes superimposed on the set point and the tolerance
bounds (top), and control inputs produced by the controllers (bottom). 

 



 

 
Figure 4.17. Comparison of the existing controller (left), expert human operator (middle), and the SOM-LLM
controller (right). Mach number tracking step changes in set point for 28 minutes (top), and control inputs produced
by the controllers (bottom). 
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