
Chapter 4

Adaptive local linear modelling and control of nonlinear dynamical systems

Deniz Erdogmus, Jeongho Cho, Jing Lan, Mark Motter and Jose C. Principe

4.1 Introduction

Systems theory is a well-established and mature area of engineering research, where many strong

general mathematical results are available. Especially the analysis of linear identification and

control systems have been pursued by many researchers leading to a complete understanding of

various mechanisms that are effective in the stability, controllability and observability of these.

Due to the availability of such an extensive knowledge base about linear systems, modern

industrial control applications are still typically designed utilising the results from linear control

systems theory. Nevertheless, academic research has been concentrating around problems

involving the stability, identification and control of nonlinear dynamical systems in the last few

decades. These efforts have now also matured into a broad theory of nonlinear systems, their

identification and control. Initial efforts in this area pursued parametric approaches, inspired by

the established linear systems theory, where the system dynamical equations are generally

assumed to be known from physical principles, possibly with some uncertainty in the values of

certain parameters. In this framework, the system identification and system control problems are

decoupled, therefore can be solved sequentially. More recently, adaptive system identification

and control methodologies have also been investigated, once again leading to a very good

understanding of the adaptation in linear systems and a satisfactorily general insight to

 169

adaptation in nonlinear control systems. The latter problem, however, is implicitly extremely

difficult to tackle and although nice mathematical results are obtained, practicality of these

nonlinear techniques is yet difficult to achieve.

 Control theory deals with the problem of manipulating the behavior of dynamical systems to

satisfy certain desired outputs from the system. Classically, as mentioned above, the design

procedure will follow the system identification and controller selection stages in the parametric

approach to system modeling and control. In the case of traditional identification based on

models derived from physical principles, the data are used to estimate the unknown parameters

[1,2], whereas modern approaches stemming from the advances in neural network theory

introduce black-box function approximation schemes in parts of the models [3-7]. The neural

network modeling capabilities may be further enhanced using multiple such sub-models in the

context of switching between adaptive models, as we will present in more detail in this chapter,

to obtain closed-loop control systems that enhance transient behavior and cope better with

modeling uncertainties and sudden model changes [8,9]. Following the system identification

stage, depending on the modeling approach taken, the controller is designed typically using

classical techniques based on linear system theory, such as gain scheduling [10], switching

between multiple fixed or adaptive controllers [11,12], as well as classical or neural-network-

based nonlinear techniques [13-15].

 A large class of real-world systems can be reasonably approximated by nonlinear, time-

invariant mathematical models. Therefore, our discussions here will focus on this class of

systems, although we will briefly describe how to extend the presented approaches to the more

general nonlinear time-varying system scenarios. Note that, however, the latter is an extremely

difficult problem to solve. Even the global modeling of time-invariant nonlinear systems and

 170

designing corresponding controllers is itself a daunting task, let alone dealing successfully with

time-variability in cases except where the variations are slow so that available adaptation tools

can cope with the task of tracking the changing models.

 A principle that is adopted with great enthusiasm in the statistical function approximation

literature is the divide-and-conquer approach that dictates solving complicated problems by

breaking them up into smaller and easier pieces that can be managed by simpler topologies. The

method presented here follows along the lines of this principle. Therefore, conceptually, this

modeling technique can be regarded as a piece-wise modeling approach, where the pieces are

then patched together to form an approximate but successful global model. Specifically, when

each of the model pieces are selected to be linear, the resulting model is a piece-wise linear

dynamical approximation to the globally nonlinear dynamical system. The advantages of such a

partitioning approach are three-fold: system identification complexity is reduced significantly

due to the scaling down of the optimisation problem from one large task to multiple small and

simple tasks, the piece-wise model easily scales up to encompass more volume in the state-space

of the dynamical system by the addition of new patches as data from previously unseen portions

of the state-space is acquired and the design of a control system for the nonlinear system can be

reduced to the design of multiple simple and local controllers among which switching or

cooperation is possible to generate a single control command to the actual plant. Especially with

the selection of local linear dynamical models, the global nonlinear controller design reduces to

the much simpler problem of designing multiple linear controllers for linear systems, a problem

for which there are many extremely strong tools available in the linear control systems literature

[16-18].

 171

 In the local modeling approach, there are two possibilities for utilising the individual local

models to generate a single global value: select one model at a given time (winner-take-all), or

take a weighted combination of the models (mixture-of-experts). Both approaches will be

discussed in detail in the following sections. In particular, the winner-take-all approach will

make explicit use of the self-organising maps (SOM) [19] in order to select which model-

controller pair to switch to at every time instant (as opposed to the output-tracking-error-based

switching criterion proposed by Narendra and co-workers [8,11]) and the mixture-of-experts

approach will utilise the finite Gaussian mixture models (GMM) for a statistical interpretation of

the local model contributions through the components of the mixture density model. Although

the output-error approach is also commonly utilised in switching expert systems, it requires

adjusting switching criterion parameters in noisy situations or for different systems, whereas in

the SOM-based switching modality, these considerations are automatically taken care of in the

SOM-training phase through the statistical interpretation of the data by the self organisation

algorithm. The trade-off in this is the requirement that the multi-dimensional state space of the

system is sufficiently covered by the SOM, whereas the output error approach operates in the

lower dimensional output space. In addition, the SOM can be trained to classify the current state

of the system directly from an input vector that is representative of this state, rather than the

indirect measure of output-error. Consequently, the model selection sequence obtained using a

SOM is expected to be more in tune with the actual state space transition that the dynamical

system experiences. The GMM-based models will also be partitioned based on the same

representative state vector as the SOM, consisting of past values of the plant’s input and output,

leading to the questions of validity and accuracy of such state representations.

 172

 It is well known that linear dynamical systems expressed by an observable state-space

equation set can be equivalently described by autoregressive moving average (ARMA)

difference equations (or differential equations in continuous time), which are essentially

recursive expressions for the current output of the system in terms of its past inputs and outputs.

The existence of such input-output recursive representations for nonlinear systems is also

dependent on the extended definitions of observability for nonlinear systems. Results

demonstrate that a wide class of nonlinear systems, called generically observable systems, also

possess such nonlinear ARMA (NARMA) models that are valid at least locally and sometimes

even globally, in the state space [2,20-23]. In summary, we can conclude that the behavior of

nonlinear dynamical systems can at least locally be described well by NARMA equations, which

is of crucial importance in the case of state-space reconstruction for dynamical systems where

the internal state variables are not accessible. In such cases, the time-delay embedding method

[24] has to be used in order to create local NARMA or ARMA models that are representative of

the system dynamics.

4.2 Motivation for local linear modeling and time-delay embedding

 Consider, without loss of generality, a single-input single output (SISO) nonlinear time-

invariant dynamical system with state vector , input nℜ∈x ℜ∈u and output with the

following set of state equations and output mapping:

ℜ∈y

 (4.1)
)(

),(1

kk

kkk
hy

u
x

xfx
=
=+

Notice that the consecutive outputs are (following the reasoning in [3] and with denoting

composite functions):

o

 173

 (4.2)

),...,,,(),(

),(),(
)()(

211

21

1

−++−+

+

==

==
==

nkkkknkknk

kkkkk

kkk

uuuuffhy

uufhy
hy

xx

xx
xx

φ

φ
φ

oLoo

M

o

Defining and []Tnkk
n
k yy 1−+= Ly []Tnkk

n
k uu 2

1
−+

− = Lu

),(1−n
kk ux

, (4.2) can be collected in a

vector-valued function form as . =Φn
ky

Implicit Function Theorem [24]. Let f be a C1 mapping of an open set into

such that f(a,b)=0 for some point (a,b) in E. Let f

mnE +ℜ⊂ nℜ

x(x,y) denote the Jacobian of f with

respect to x at the point (x,y) in E. If fx(a,b) is invertible, then there exists an open set

 and W with (a,b)∈U and b∈W such that to every y∈W there corresponds

a unique x satisfying f(x,y)=0, (x,y)∈U. If this x is defined to be g(y), then g∈ C

mnU +ℜ⊂ mℜ⊂

nℜ

1 and is a

mapping of W into , g(b)=a and f(g(y),y)=0 for all y∈W.

The Implicit Function Theorem basically states that the condition of local invertibility for a

nonlinear function is that its Jacobian is locally nonsingular. Employing this theorem on the

vector-valued function representation of (4.2), we conclude that if the Jacobian is

nonsingular at a stationary point in the state space of the unforced system, then x

xΦ ∂∂ /

k can be

expressed locally in terms of y and u . However, since by definition xn
k

1−n
k k+n depends on the

inputs uk,…,uk+n-1 and the initial state xk, there exists a unique local nonlinear input-output

mapping of the form

 (4.3)),...,,,,...,,(11111 +−−+−−+ = nkkknkkkk uuuyyyFy

valid in an open set in the state space encompassing the stationary point of linearisation. The

same conclusion result could also be obtained with the brute force method of linearising the

nonlinear dynamics around a stationary point in the state space and defining a state

transformation from the actual state vector to incremental changes in the states, such that the

 174

system is locally represented by an ARMA process with state-dependent coefficients, which

essentially becomes a NARMA equation as in (4.3). Conversely, it is possible to express the

local NARMA process of (4.3) by a set of switching local ARMA processes, where each

linearisation is carried out at the current operating point. Effectively, at a given operating point

, the approximate ARMA process is),...,,...(),(*
1

**
1

+−+−= mkknkk

n
k

n
k uuyyuy

 (4.4)

[]

[]

[] 
























⋅∇∇−+












⋅∇∇=













−

−
⋅∇∇+=+

*

*

*

*

1

),(),(),(

ˆ
ˆ

),(),(

ˆ
ˆ

),(),(),(ˆ

n
k

n
kn

k
n
k

n
k

n
k

n
k

n
k

n
k

n
kn

k
n
k

n
k

n
k

n
k

n
k

n
k

n
kn

k
n
k

n
k

n
k

n
k

n
kk

FFF

FF

FFFy

u
y

uyuyuy

u
y

uyuy

uu
yy

uyuyuy

uy

uy

uy

where the model output is a linear combination of the reconstructed state variables plus a bias

term. For smoothly varying nonlinear dynamical systems, this ARMA model can further be

accurately approximated by a purely linear combination of the reconstructed state variables as

, where the bias term is implicitly embedded in the local model coefficient

vectors a and b through the least squares type consideration of the approximation error and the

mean state vector value in the neighborhood of approximation. This latter approximation is

necessary when it is desired to design a local linear linear controller for the local linear ARMA

model. The elimination of the bias term makes the local model truly linear in terms of its inputs

and outputs, not just linear in its coefficients.

n
k

Tn
k

T
ky ubya ˆˆˆ 1 +=+

 In this piece-wise linear approximation of the original nonlinear system, the coefficients of

the locally effective ARMA model are determined by the current state of the nonlinear system,

which is expressed in terms of the past values of the system input and output. This is an

important observation, since in general, if the mathematical model of the plant is not known, its

physically meaningful internal state variables are not accessible either. Under such conditions,

 175

the past values of the input and the output signals can be utilised to generate a representative

state vector to identify the local behavior of the system.

 In chaos theory and nonlinear time-series analysis, this method of reconstructing a state

vector is referred to as time-delay embedding and there are strong theoretical results that

demonstrate the mathematical validity of this approach for the case of autonomous nonlinear

systems [22,23]. In particular, Takens’ embedding theorem states, in plain words, that there

exists an invertible (i.e. a one-to-one and onto) between the original state dynamics and the

reconstructed state dynamics provided that the embedding dimension (the number of lags in the

reconstructed state vector) is sufficiently large (specifically greater than two times the original

state dimension). A similar result was also demonstrated by Aeyels that stated almost any

autonomous system of the form)(),(xxfx hy ==& is generically observable if 2n+1 samples of the

output is taken in a manner similar to (4.2) [20].

 These theoretical results on the local NARMA representations combined with the

observability of nonlinear systems and the utility of time-delay embedding reconstructions of the

state vector allow the construction of a piece-wise linear dynamical model approximation for a

nonlinear system, which can be determined and optimised completely from input-output data

collected from the original system. The literature is rich in multiple model approaches for

nonlinear modeling [1,25], where the general consensus is that local modeling typically

outperforms global modeling with a single highly complicated neural network in input-output

modeling scenarios [2,26-30], despite the intrinsic simplicity and the input-output delay

embedding approach has been adopted commonly based on results from nonlinear time-series

analysis, such as Takens’ theorem and its extensions [28]. A question of practical importance in

 176

this black-box input-output modeling approach is how to choose the number of embedding lags

for both the input and the output. The next section deals with this question.

 The motivation presented above mainly dealt with noise-free deterministic dynamical

systems, whereas in practice, the available data is certainly noisy. From a mathematical

perspective the suitability of the local modeling approach is justified by the above discussion.

The practical aspects when noisy data is utilised is going to be investigated in the following

sections whenever necessary.

4.3 Selecting the embedding dimension

 If the number of physical dynamical states of the actual nonlinear system is known a priori,

one can select the length of the embedding tap-delay lines for the input and output in accordance

with the theoretical results by Takens and Aeyels. For complete practicality of the proposed local

linear modeling approach for unknown systems, however, a truly data-driven methodology for

determining the embedding dimensions for the input and output signals is required.

 The problem of determining accurate input-output models from training data generated by

the system has been addressed by many researchers [1-3,7,9,30,31], where the selection of the

number of lags for the input and output signals (which is essentially a question of model-order

selection) has always been an issue of practical importance. A useful solution to determine the

embedding dimensions for input-output models is outlined by He and Asada [32], where the

model order is determined based on the Lipschitz index calculated using the training data and the

corresponding optimal model outputs for various embedding dimensions.

1. Select candidate output and input embedding dimensions n and m.

 177

2. From now on consider all past values of input and output as input variables

x1,…,xn,xn+1,…,xn+m. Let the model output be denoted by y. Denote the ith input vector

sample by xi and the output by yi, i=1,…,N.

3. For every pair of samples evaluate the Lipschitz quotient: qij=|yi-yj|/||xi-xj||, i≠j, i,j=1,…,N.

4. Let q(n+m)(k) denote the kth largest quotient qij.

5. Evaluate the Lipschitz index:
pp

k
mnmn kqnq

/1

1
)()()(






= ∏ =

++ , where p is an integer in the

range [0.01N,0.02N].

6. Go to step 1 and evaluate the Lipschitz index for a different set of embedding dimensions.

The appropriate values of embedding dimensions will be indicated by the convergence

index of the decreasing Lipschitz index as the embedding dimensions are increased one by

one.

 According to the theory, the appropriate embedding dimension pair for the input and the

output is indicated by the convergence of the index. In other words, the embedding dimension,

where the index stops decreasing (significantly), is to be selected as the model order.

4.4 Determining the local linear models

 The local linear modeling approach can be broken into two consecutive parts:

clustering/quantising the reconstructed state vector adaptively using a

statistically sound approach and optimising the local linear models corresponding to each cluster

of samples with least squares (or some other criterion) using data from only that cluster.

TnT
k

nT
k

r
k][uyx =

1 There

1 Although we focus on local linear modeling in this chapter, the principles and methodologies outlined here can

immediately be extended to local nonlinear modeling. In fact, we will briefly investigate this latter choice later.

 178

are many possible techniques for tackling each of these individual problems available in the

literature. For example, the first step (data clustering) can be achieved by using a standard

clustering algorithm (such as k-means clustering [23]) or vector quantisation methods [33],

numerous variants of self organising maps (referred to as SOM) [19], or probability density

mixture models (specifically the Gaussian Mixture Models – GMM) [34]; the second step

(model optimisation) can be achieved using the analytical least squares solution (also referred to

as the Wiener solution) [35], the least-mean-squares (LMS) algorithm [36], the recursive least

squares algorithm [35], or the Kalman filter [37] if the mean-squared-error (MSE) is the

optimality criterion of choice.2

 In this section, we will focus on two of the clustering methods listed above: SOM and GMM.

Based on which approach is selected in modeling, the principle behind the local linear models

will be either competitive (for the SOM) or cooperative (for the GMM). Later on, the controller

designs will also be slightly different due to this difference in the nature of the two approaches.

In any case, the local model representation regimes will be selected optimally according to the

criteria that these clustering methods utilise marking the main difference of the proposed

adaptive local linear modeling approach from the standard gain-scheduling-like traditional

approaches where the operating points of these local linear models are typically selected to be

the stationary points of the state dynamics. In the case of completely unknown dynamics, this

option is out of the question any way. Therefore, the methods presented here can be successfully

applied both to cases where the actual state vector is accessible and where it is not available (so

that input-output modeling is required).

2 Alternative optimality criteria include other moments [38] and entropy [39] of the modeling error.

 179

4.4.1 Clustering the Reconstructed State Vector Using Self-Organising Maps

 Off-Line Training Phase: Suppose that input-output training data pairs of the form

{(u1,y1),…,(uN,yN)}, where u is the input signal and y is the output signal, is available from a

SISO system for system identification. Under the conditions stated earlier, a nonlinear time-

invariant dynamical system can be approximated locally by a linear ARMA system of the form3

 (4.5) ccububyayay m
k

Tn
k

T
mkmknknkk ++=++++++= −−−−−− 111111 ubya

The reconstructed state vector []Tmkknkk
mn

k uuyy −−−−= LL 11
,x can be adaptively achieved

using a SOM with any topology of choice (triangular or rectangular grids are possible). The

SOM consists of an array of neurons with weight vectors wi that are trained competitively on its

input vectors .mn
k

,x 4 In training, these input vector samples are presented to the SOM one at a

time in multiple epochs and preferably in each epoch, the presentation order of the samples is

randomly shuffled to prevent memorising and/or oscillatory learning behavior.

 At every iteration, the winner neuron is selected as the one that minimises instantaneously

the Mahalanobis distance between the weight vector and the

current training sample. Then the winner weight and its topological neighbors are updated using

the following stochastic incremental learning rules [19], where w

)()(),(1
k

T
kkd xwΣxwxw −−= −

w

 and wn denote the winner and

neighbor neuron weights, respectively:

 (4.6)
))(())(||,)()((||)()()1(

))(()()()1(
1

1

tttthttt

tttt

nkwnnn

wkww

wxΣwwww

wxΣww

−−+←+

−+←+
−

−

ση

η

3 The bias term c is required for mathematical consistency, however, in practice it is optional and can be removed

due to reasons discussed before.

4 The superscript n,m will be dropped from now on whenever unnecessary.

 180

In the Mahalonobis distance, the scaling matrix Σ can be selected as the input covariance to

emphasize various directions in the updates in accordance with the data structure, or it can be set

to identity. The neighborhood function h(.,σ) is a monotonically decreasing function in its first

argument and it is unity when evaluated at zero and zero when evaluated at infinity. This allows

the neighboring neurons to be updated proportionally to their distance to the instantaneous

winner. The neighborhood radius σ is slowly annealed as well as the learning rate η. The

neighborhood radius is initially set such that most of the network is included in this region, but in

time, as the neurons start specializing in their distinct regions of quantization, this radius

decreases to small enough values to cover only the winner neuron effectively. Typically, the

neighborhood function is selected as a one-sided Gaussian function with the standard deviation

parameter controlling the neighborhood radius. Both the radius and the learning rate can be

annealed linearly or exponentially in terms of iterations or epochs.

 The trained SOM can be regarded as a vector quantizer with the special topology preserving

property. In particular, the SOM quantizes its input space while preserving the topological

structure of the manifold that the samples come from, resulting in strong neighborhood

relationships between the neurons; neighboring input vectors are mapped to neighboring

neurons, thus in the next step of local linear modeling, neighboring models will be structurally

similar. The input space of the SOM, which is equivalently the reconstructed state space of the

system under consideration, is partitioned into smaller non-overlapping sets that are typically

illustrated by a Voronoi diagram. The input samples {(, which are in the i)},(),...,, 11 ii iNiNii yy xx th

Voronoi region, are associated with the corresponding neuron with weight vector wi, where Ni is

the number of training samples in this region. In this local modeling scheme, besides the SOM

weight vectors, each neuron also has a vector of local linear model coefficients associated with

 181

it, denoted by ai and bi separately for the output and input portions of the reconstructed state

vector respectively. These models can be optimised using the training data clustered to the ith

Voronoi region and the MSE criterion. This results in the following least-squares optimal local

linear model coefficients [35,36]:5

 (4.7) iidu
i

dy
i

uu
i

uy
i

yu
i

yy
i

i

i
i PR

P
P

RR
RR

b
a

c 1
1

−
−

=























=








=

where the blocks of the input autocorrelation matrix are obtained from the training samples using

∑∑

∑∑
==

==

k

nT
k

n
k

i

uy
i

k

nT
k

n
k

i

yu
i

k

nT
k

n
k

i

uu
i

k

nT
k

n
k

i

yy
i

NN

NN

yuRuyR

uuRyyR

11

11

 (4.8)

and the input-desired crosscorrelation vector blocks are estimated from samples using

 ∑∑ ==
k

n
kk

i

du
i

k

n
kk

i

dy
i y

N
y

N
uPyP 11 (4.9)

Finally, the output of the ith local linear model with the optimised coefficients is given by

. More generally, introducing the model output weighting term pk
T
i

T
iky xba][ˆ = ik, the overall

local linear model system output is expressed as a switching (weighted) combination of the M

individual model outputs:

 (4.10) ∑
=

=
M

i
k

T
iikk py

1

ˆ xc

For hard competition, the weighting coefficients pik take only the values 0 or 1 at every time

instant k. The selection completely depends on the ith neuron winning for input vector xk. A

simple modification that one can introduce to the SOM-based local linear models to make the

overall model cooperative rather than competitive is to allow other weighting values for the

5 If the bias term is included in the linear model, then the Wiener solution in (7) must be modified accordingly.

 182

models. For example, a weighted average type combination based on the distances of the current

sample to the neuron weights would have

()∑ =

=
M
j kj

ki
ik

df

df
p

1
),,(

)),,((

σ

σ

xw

xw
 (4.11)

where a monotonically increasing emphasis function f(.,σ) is combined with the Mahalonobis

distance d(.,.). The choice of a linear emphasis function would exactly be weighted averaging

based on Mahalonobis distances. For clarity, the overall SOM-based local modeling topology is

illustrated in Figure 4.1.

 On-Line Training Phase: In most cases, a batch-training phase as described above is

beneficial for control system performance on the actual system. The on-line training procedure,

although it could be employed immediately to the unknown system with random initialisation of

all the weights and coefficients to be optimised, could require a large number of samples and/or

time to become sufficiently accurate, while in the mean time the system operates under an

improper controller system. Nevertheless, the on-line training algorithm presented here could be

especially useful in fine-tuning the existing models or introducing additional local models to the

archive whenever modeling performance of the existing system drops below acceptable levels. In

addition, for identifying time-varying systems, the local models can be continuously adapted

using on-line data. For only fine-tuning of the existing models, one only needs to continue

updating the SOM weights as well as the local linear model coefficients on a sample-by-sample

basis in real time. The SOM weights can be continued to be updated using the original update

rules given in (4.6). The local linear model coefficients, however, must be updated by one of the

 183

many existing on-line linear model weight update rules from the literature. These on-line training

rules for linear models include LMS and RLS (for recursive least squares) [35].6

 When using LMS or RLS, only the coefficients of the linear model associated with the

instantaneous winner neuron (whose weight vector is updated recently using the SOM learning

algorithm) are updated. The LMS update rule for the coefficients of the winner model (assuming

neuron i is the winner) is given by

 (4.12) kk
T
ikii y xxccc)(−+← µ

where µ is the LMS step size. Since LMS uses stochastic gradient updates for the model

coefficients, it exhibits a misadjustment associated with the power of the inputs and the step size.

However, its computational complexity is very low, suitable for fast real-time applications. On

the other hand, RLS is a fixed-point algorithm that can track the analytical Wiener solution via

sample-by sample updates. The drawback is its increased complexity compared to LMS. The

coefficient updates for the winner model according to RLS is given by the following iterations

() ()
()

i
T
kiii

k
T
ikiii

ki
T
kkii

y

RxkRR

xckcc

xRxxRk

11

11 1

−−

−−

−←

−+←

+←

λλ

λλ

 (4.13)

where the input autocorrelation matrix and weight vectors are initialised to Ri=δ -1I, ci=0, δ being

a small positive value.

6 These update rules can be extended to the updating of nonlinear model weights [40]. The extension of LMS is

trivial. The RLS algorithm is, in principle an implementation of the Kalman filter considering the adaptive weights

as states. Hence, extensions to nonlinear systems (such as neural networks) are achieved through the formulation of

the learning problem as an extended Kalman filtering problem [41].

 184

 Besides MSE, alternative model optimisation criteria such as alternative lags of error

correlation [40], higher order error moments [36], or error entropy [38], can be utilised. Similar

on-line update algorithms can be derived for these alternative criteria.

 In some situations, simply fine-tuning of existing local models might not be sufficient to

meet performance requirements in a sustained manner. Especially if, in actual operation,

situations that are not encompassed in the training data set are encountered then a new local

model might need to be introduced to the system of models. This could be achieved by utilising a

growing SOM (GSOM) [41]. The most suitable grid structure for the GSOM is triangular. The

neuron weights are still updated using (4.6). Contrary to static a SOM, in the GSOM, once in a

while (e.g., at the end of every epoch), a new neuron is inserted (generated) in the weight space

to the midpoint of line segment connecting the neuron with the highest winning frequency and

the neuron farthest to it. A similar neuron-killing criterion can be developed to eliminate

infrequently activated neurons. This procedure is repeated until a balanced distribution of input

samples per neuron is obtained in the Voronoi diagram. In the process of generating and killing

neurons, the triangular topology of the SOM must be preserved, so the new neighborhood

connections must be selected accordingly.

4.4.2 Clustering the Reconstructed State Vector Using Gaussian Mixture Models

 Off-Line Training Phase: Suppose that input-output training data pairs of the form

{(u1,y1),…,(uN,yN)}, where u is the input signal and y is the output signal, is available from a

SISO system for system identification. The linear models described by (4.5) are still valid

locally. In contrast to the SOM clustering of the reconstructed state vector

, which trains the cluster centers (neurons) competitively, [T
mkknkk

mn
k uuyy −−−−= LL 11

,x]

 185

the Gaussian mixture model considers the possibility of multiple modes generating the same

state. In particular, it is assumed that the probability distribution of the state vector is given by

 (4.14) ∑
=

=
M

i
iikik Gp

1
),;()(Σµxx α

where G(x;µ , Σ) is a multivariate Gaussian density with mean µ and covariance Σ. The

coefficient αi denotes the probability of occurrence of the ith mode in the GMM, which in turn

reflects the probability of the corresponding local model being effective. Given the training data

and once the state vectors are reconstructed using embedding, the maximum likelihood solution

for the parameters αi, µi and Σi can be determined using the expectation maximisation (EM)

algorithm [34]. The EM algorithm can be outlined as follows:7

1.E-Step: Compute the expectation of the log-likelihood of the complete data conditioned by

the observed samples assuming the most recent solution for the mixture parameters, which

is given by Q , where the parameter vector is defined to

include all means, covariances and weights in the mixture model:

.

[∑= k tkt pE ϑϑϑϑ ,|)|(log)|(xv

MMM vecvec)()(11 ΣΣµµ LL

]

[]T1 L ααϑ =

2.M-Step: Update parameter estimates to 1+tϑ , which is the maximiser of)|(tQ ϑϑ .

 Similar to the SOM-based modeling, in GMM-based local linear models, each Gaussian

mode has a vector of local linear model coefficients associated with it, denoted by ai and bi,

again, for output and input portions of the reconstructed state vector, respectively. The output of

the ith local linear model is given by . The overall model output is a weighted k
T
i

T
iky xba][ˆ =

7 The EM algorithm is essentially a fixed-point update rule for the mixture density parameters to maximize the

likelihood of the data.

 186

combination of the M individual outputs as in (4.10), , where ∑ =
=

M
i k

T
iikk py

1
ˆ xc

),;(iikiik Gp Σµxα= . The linear model coefficients can be collectively optimised using a

modified Wiener solution similar to that in (4.7). The modification involves the model activation

probabilities, pik and is explicitly given as , where . The input

autocorrelation matrix and the input-output crosscorrelation vector are defined using the

modified input vector z .

PRθ 1−=

]T
kx

]T
M

T
M ba[11

TT baθ L=

[1 Mk
T
kkk pp x L= 8 Specifically

∑=
k

kky
N

z1

kz)

∑=
k

T
kkN

zzR 1

T
ky θθθ (−+← µ

 P (4.15)

For completeness, the GMM-based local modeling topology, which is similar to the SOM-based

topology in many aspects, is shown in Figure 4.2.

 On-Line Training Phase: After the off-line training procedure described above, the GMM-

based model can be put to practice, while small adjustments to the existing parameters and model

coefficients could be carried out in operation on a sample by-sample basis, although this would

be computationally extremely expensive. The EM algorithm could still be iterated by including

one more sample to the probability density evaluations at every time instant. Alternatively, the

EM algorithm could be replaced by a gradient-based maximum likelihood algorithm that can be

operated in a stochastic manner (similar to LMS) to update the GMM parameters. Similarly, the

linear model coefficients can be updated on-line using LMS or RLS with the modified input

vectors zk [35]. Particularly, the LMS update for the linear model coefficients is

 (4.16) kz

8 Notice that the GMM-based model output is equivalently expressed as k
T

ky zθ=ˆ

 187

and the corresponding RLS update is similar to (4.13), but the input and weight vectors are

modified:

() ()
()

RkzRR

zθkθθ

RzzRzk

T
k

k
T

k

k
T
kk

y
11

11 1

−−

−−

−←

−+←

+←

λλ

λλ

 (4.17)

 Alternative model optimisation criteria such as alternative lags of error correlation [40],

higher order error moments [36], or error entropy [38], can also be utilised in this case with

appropriate modifications.

4.4.3 Extending the Methodology to Local Nonlinear Modeling

 It was made clear that the general nonlinear system of (4.1) is, in general, approximated

locally by a NARMA process and we went one step further in the approximation to replace the

local NARMA approximation by piece-wise linear dynamics. One obvious modification would

be to allow the local models to be nonlinear input-output dynamical recursive systems, such as

time-delay neural networks (TDNN) [42]. The TDNN, being an extension of multilayer

perceptrons (MLP) to time series processing, still possesses the universal approximation

capabilities of MLPs, however, for the restricted class of dynamical systems with myopic

memories (i.e., systems where a finite number of past values of the input affect the output, in a

manner similar to the observability conditions discussed earlier in this chapter) [43,44]. A TDNN

basically consists of a number of FIR filters in parallel whose outputs are modified by sigmoid

nonlinearities and then linearly combined by the output layer. More generally,multiple layers of

nonlinear FIR filter banks can be employed, but it is known that a sufficiently large single hidden

layer TDNN has enough approximation capability. Training is typically performed via

backpropagation of MSE [42].

 188

 Another feasible alternative that has a smaller approximation capability, but significantly

simple to optimise is an Hammerstein dynamical system [45,46]. A Hammerstein structure

consists of a static nonlinearity that transforms the input followed by a linear dynamical system.

Once the input nonlinearities are set, the training of the linear dynamical portions is similar to the

linear models discussed earlier (using the properly modified input autocorrelation matrix in the

case of MSE optimality criterion).

 Another possibility in nonlinear modeling is to use Volterra series approximation [47].

Volterra series expansion is an extension of Taylor series expansion to dynamical systems. It is

based on multi-dimensional convolution integrals and the first order Volterra approximation is

simply a linear convolutive system. Typically, Volterra series approximations are truncated at

most the third order convolution and separability of the multidimensional impulse responses is

assumed for simplicity. This, of course, limits the approximation capability of the model in

addition to the fact that the least squares optimisation of the model coefficients is not necessarily

simplified; local minima problems still exist.

 Finally, as a direct consequence of Taylor series expansion, the local linear models can be

extended to include higher order polynomial factors of delayed values of the input and the

output. This is the Kolmogorov-Gabor polynomial modeling approach [48]. The number of

coefficients to be optimised grows combinatorially with the order of the polynomial model,

creating the main drawback of this approach.

4.5 Designing the local linear controllers

 An added advantage of the proposed local linear modeling approach is it greatly simplifies

the design of control systems for nonlinear plants. In general, this is a daunting task and typically

 189

practical solutions involve linearisation of the dynamics and then employing well-established

controller design techniques from linear control systems theory. While designing globally stable

nonlinear controllers with satisfactory performance at every point in the state space of the closed

loop control system is extremely difficult and perhaps impossible to achieve especially in the

case of unknown plant dynamics, the local linear modeling technique presented above, coupled

with strong controller design techniques from linear control theory [18,49] and recent theoretical

results on switching control systems [8,11,18], it becomes possible to achieve this goal through

the use of this much simpler approach of local modeling. The topology of local linear controllers

that naturally arise from the local linear modeling approach is illustrated in Figure 4.3.

4.5.1 Inverse Error Dynamics Controller Design

 Once the optimal local linear models have been identified from the training input-output data

available for system identification, one can use any standard linear controller design techniques

to meet predefined regulation, stabilisation, or tracking performance goals. Possibilities include

stabilisation with linear state feedback (the individual ARMA systems can be expressed in

controllable canonical form to design their corresponding state-space controllers), regulation or

tracking a time-varying desired output response signal by a PID controller or more generally

inverse error dynamics controller. In this section, we will focus on the latter, inverse error

dynamics controller scheme as it includes the PID controllers [50-53] and the exact tracking

control [3,54], commonly utilised in practice.

 The principle behind inverse error dynamics controller design is pole placement. Simply, it

can be described as selecting a set of stable poles for the tracking error signal dynamics. If we

denote the desired plant output at time k by dk and the actual plant output by yk, then the

 190

instantaneous tracking error is simply given by ek = dk - yk.9 The goal of this controller design

technique is to guarantee that the error signal obeys the following dynamical equation:

 0... 11211 =++++ +−−+ lklkkk eeee λλλ (4.18)

The parameters λ=[λ1,…, λl]T are selected such that the roots of the polynomial 1+λ1x+…λlxl are

inside the unit circle. This guarantees the global stability of the closed loop control system

provided that there is no noise, disturbance or modeling error. We will address how to handle

these unwanted effects by designing the parameter vector appropriately later in this section. Of

particular interest are inverse error dynamic equations of order 0 to 3. These are explicitly

 (4.19)

controller PID0:3Order
dynamicserror decayinglinear order Second0:2Order

dynamicserror decayinglinear order First 0:1Order
controller kingExact trac0:0Order

231211

1211

1

1

=+++
=++

=+
=

−−+

−+

+

+

kkkk

kkk

kk

k

eeee
eee

ee
e

λλλ
λλ

λ

 The exact tracking controller simply solves for the error equation to determine the control

input necessary for the next error value to be identically zero. This strategy, obviously, is not

robust to modeling errors or external disturbances such as measurement noise. The first and

second order error dynamic controllers are easy to design, since analytical expressions of their

corresponding poles and the associated dynamical behaviors are well understood in linear system

theory. Especially the second order controller allows the designer to choose both overshoot and

settling time simultaneously. The third order error dynamics controller is effectively a PID

controller, since PID controllers, when discretised, allow the designer to place the closed loop

9 Although we are considering discrete-time controller design here, the idea is easily applied to continuous-time

controller design as well. In addition, generalization to MIMO systems is also achieved simply by defining a vector-

valued error signal, whose entries may or may not interact in the desired error dynamics equation through the use of

non-diagonal or diagonal coefficient matrices.

 191

system poles to any location on a three dimensional manifold in the n-dimensional space of the

plant dynamics.

 In the most general case, defined by (4.18), the control input is solved for as follows:

 (4.20) l
k

T
lklkkkkk eeeyde eλ−=+++−=−= +−−+++)...(ˆ 1121111 λλλ

Recall that explicitly the model output is given by

. We are particularly interested in the terms

involving u

∑∑∑ ===+ +==
M
i

m
k

T
iik

M
i

n
k

T
iik

M
i

mn
k

T
iikk pppy

111
,

1ˆ ubyaxc

M
i iik

M
i

m
k

T
iik

M
i

n
k

T
iikk bpppy

1 11
1
111

~ˆ 





+






 += ∑∑∑ ==

−
−=+ ubya

k. Separating these terms from the others in the expression, the model output is

, where all new variables are

defined in accordance with the equalities here. Introducing this new expression in (4.20) and

solving for the input u

kkk ubvu 1
~

+=

k, we obtain

 (k
l
k

T
kk vd

b
u −+= + eλ1

1
~
1) (4.21)

 Notice that we can define ()() i
Tm

k
T
i

n
k

T
ikik bdu 1

1
11 /~ eλubya ++−= −
−+ as the control input suggested

by the ith model. With this definition, the control input of (4.21) can be expressed as

 ∑
∑
∑

=

=

= ==
M
i ikikM

i iik

M
i ikiik

k u
bp

ubp
u

1
1 1

1 1
α (4.22)

where , thus (4.21) is equivalent to a weighted average of the individual control input

suggestions by the M local linear models, which motivates the parallel controller topology shown

in Figure 4.3.

1
1

=∑ =

M
i ikα

 For various choices of the error dynamics order and pole locations, the control law will drive

the tracking closed-loop system in various different ways, while the error signal will always

satisfy the linear difference equation given in (4.18), which is selected by the designer. An

 192

alternative controller design technique for both local linear models and local nonlinear models

(should this be the designer’s choice) is sliding mode control [55], which is essentially a

nonlinear extension of the linear inverse error dynamics controller design methodology presented

here. Sliding mode control is also well understood in the nonlinear control literature and it is

known to be more robust to modeling errors and external disturbances compared to its linear

counterpart [56]. In the linear case, which is being considered in this chapter, while any stable

choice of stable poles will work satisfactorily and as expected in no-error/disturbance scenarios,

in practice, due to the piece-wise nature of the local models and sensor noise, these undesirable

effects will always corrupt the calculated control input in (4.21). This can be countered by

carefully selecting the error dynamic pole locations such that the parameter vector λ represents a

discrete-time filter that eliminates most of the power that is contained in these disturbances.

Clearly, this requires the a priori knowledge of the statistical characteristics of these

disturbances. Specifically, one needs the power spectral density information so that the filter can

be designed to suppress high-energy frequency bands.

4.5.2 Selecting the Error Dynamics Pole Locations to Suppress Disturbance Effects

 Recall the tracking error dynamical equation in (4.18), , obtained

using the local linear models with noisy input-output measurements from the system according

to the prediction equation , where is the vector of noisy input-output

measurements, y

l
k

T
kkk yde eλ ˆˆˆ 111 −=−= +++

l
k

T eλ ˆ−

k
l
k

T n+−= eλ

kkk
T

k nyy +== ++ 11 ˆˆ zθ kẑ

+1

k+1 is the true plant output corresponding to the planned control input and nk is

the overall error term that includes all external disturbances and modeling errors. With this

notation, also including the measurement noise present in in nk, the dynamical equation

that the true tracking error obeys becomes stochastic: e . In effect, this represents k

 193

an all-poles filter from the noise term nk to ek, whose pole locations are exactly determined by λ.

Hence, besides the stability constraint, the poles should be located inside the unit circle such that

the all-pole filter from noise to tracking error that has the transfer function

.)...1/(1)(1
1

l
l zzzH −− +++= λλ

ˆ...ˆ 111 ++++ ++ kkqkq eee ληη

[] q
qk

Tlq
qk

TT
+

+
+ = nηeλη

q zz

z
zH

−−

−

+++

+
=

11
1

1
21

...1
)(

ηη

ηη

 This observation inspires an alternative linear error dynamics approach to controller design in

the case of measurement noise, external disturbances and modeling errors. If the equation in

(4.18) is properly modified, it might be possible to achieve arbitrary transfer functions H(z) from

noise to tracking error (i.e. transfer functions with zeros and poles simultaneously). To achieve

this, the error dynamic equation must be extended to further error predictions into the future

using the model. Specifically, if the following error dynamic equation is used

 (4.23) 0... 112 =++ +−− lklk ee λλ

then the noise and error terms, again collected in a single nk, drive the following ARMA system

from the disturbance to the tracking error:

 (4.24)

Effectively, this corresponds to the following transfer function from nk to ek:

ql

l
qq

q
q

zz

z
−−−

−

+++

++
1

1

1

...

...

λλ

η
 (4.25)

Consequently, the parameter vectors η and λ must be selected to place the zeros and poles of the

transfer function in (4.25) to maximally filter out noise, using the spectral density information.

The noise PSD can be estimated from training data, which is collected from the original system

under noisy measurement conditions. These procedures are out of the scope of this chapter,

therefore, we will not go into the details. However, spectral estimation is a mature and well-

established research area [57].

 194

4.6 Simulations

 The local linear modeling and control technique that is presented above has been tested on a

variety of nonlinear system identification and control problems including chaotic time-series

prediction, synthetic nonlinear system identification, simplified missile lateral dynamics

identification and control, NASA Langley transonic wind tunnel and NASA LoFlyte waverider

aircraft. In this section, we will provide a compilation of simulation and experimental results

obtained from the application of these principles to the listed problems.

4.6.1 Chaotic Time Series Prediction

 In this example, we will demonstrate the use of the Lipschitz index for determining the

model order for a SOM-based local linear modeling system using data generated by the Mackey-

Glass attractor and the Lorenz attractor. The Mackey-Glass chaotic system is governed by the

following differential equation [58]:

)(1

)()()(
γ

γα
ρ −+

−
+=

tx

txtbxtx& (4.26)

The delay γ controls the depth of the underlying chaotic motion. The parameters are set to α=0.2,

β=-0.1 and ρ=10. The system in (4.26) is iterated using the Runge-Kutta-4 integration method

with a time step of 1 and the signal is downsampled by a factor of 6. An embedding dimension of

6 and an embedding delay of 2 were determined based on the Lipschitz index and auto-mutual-

information10 of the signal, shown in Figure 4.4. A SOM trained on 1000 samples of input vector

10 Information dimension is a standard method for determining the delay amount in the embedding. The first zero or

the minimum of the auto-mutual-information [60] is used as the embedding delay.

 195

generated as described exhibit the Mackey-Glass attractor’s topology, as shown in Figure 4.5. In

addition, evaluation of the single step prediction performance using local linear models (LLM)

attached to the neurons of the SOM demonstrates the high accuracy: a prediction signal-to-error

ratios (SER) of 33.80dB, 33.39dB and 31.05dB are obtained using a 15x15 rectangular SOM-

LLM, a 40-neuron single layer TDNN and a 100-basis Radial Basis Function (RBF) network,

respectively.

 The second chaotic system that will be considered here is the Lorenz attractor. The dynamics

of this system are governed by the following system of differential equations [58]:

bzxyz

Rxxzyy
xyx

−=
+−−=

−=

&

&

&)(σ
 (4.27)

where we selected R=28, σ=10 and b=8/3 to obtain chaotic dynamics and the first state as the

output. Using Runge-Kutta-4 integration with time step 0.01, 9000 samples were generated for

analysis. Using the Lipschitz index and mutual information analysis (as shown in Figure 4.6) the

embedding dimension is determined to be 3 and the embedding delay is 2. The first 8000

samples from the output time-series are used to create the reconstructed state samples, according

to which the SOM and the local linear models are trained for single step prediction. As seen in

Figure 4.7, the SOM represents the Lorenz attractor accurately. In addition, the single step

prediction performance, again evaluated in terms of SER is found to be 53.74dB, 49.23dB and

50.46dB for the 20x20 SOM-LLM, 100-neuron TDNN and 150-basis RBF network,

respectively, on the remaining 1000-sample test set.

 These examples illustrate the modeling capability of the LLM technique on chaotic signal

prediction, which is a benchmark problem in system identification. In addition, the validity of the

Lipschitz index for selecting the embedding dimension (i.e., model order) is demonstrated by the

 196

successful reconstruction of the two chaotic attractors with the dimensions indicated by this

index.

4.6.2 Synthetic Nonlinear System Identification

 The first nonlinear system that is considered here is defined by the following state dynamics

and output mapping [13]. Since the input is cubed, a finite number of linear models will not have

good global approximation performance. The approximation will only be valid in the range of

inputs available in the training data.

kk

k
k

k
k

xy

u
x

x
x

=

+
+

=+
3

21
1 (4.28)

Input-output training data is generated using white input signal distributed uniformly in [-2,2].

Since the input is independent from itself at any delay, the embedding delay is taken to be unity.

The embedding dimensions for the input and the output are both 2. Consequently, a SOM is

trained using the input vector [yk,yk-1,uk,uk-1]T and corresponding local linear models are

optimised using least squares. For a comparison, a local quadratic polynomial Hammerstein

modeling (LPM) approach is also implemented [46]. The reconstructed state vector for this

model is [yk,uk, u]2
k

T. The size of the rectangular grid structure is selected based on the

generalisation MSE of both models on a validation set. A size of 15x15 is selected for both

SOMs. The system identification capabilities of the SOM-LLM, the SOM-LPM, a 150-basis

RBF network and a 13-neuron Focused gamma neural network (FGNN) [59] are compared.11

Their performances on the test set are respectively 12.73dB, 47.95dB, 43.56dB and 44.59dB.

11 The FGNN is a generalization of the TDNN where the input tap-delay line is replaced by a tap-gamma line.

 197

Clearly, the cubic input term is not sufficiently approximated by the selected number of linear

models and increasing the size of the network results in poor generalisation. As expected, the

quadratic polynomial is certainly much more effective in approximating the cubic nonlinearity

locally with the same number of local models.

 The second nonlinear system that is considered is an FIR filter followed by a static

nonlinearity defined by:

 (4.29))5.0arctan(11 −+ −= kkk uuy

The system is excited by white input uniform on [-2,2] and system identification was carried out

using the SOM-LPM topology explained above. The system identification testing results yielded

SER values of 47.96dB, 49.99dB and 52.30dB for 8-neuron FGNN, 41-basis RBF and 15x15

SOM-LPM, respectively.

4.6.3 Simplified Lateral Missile Dynamics Identification and Control

 Under the assumptions of constant mass, zero roll and pitch angles and angular speed, the

yaw dynamics of a missile can be expressed by [5]:

 (4.30)

1

2
5
1

3
112

1
5
1

3
11121

100155065

)cos(5.0)45)(cos(1.0

xy
uxxxxx

uxxxxxxx

=

−−+−=

−+−−=

&

&

The input is the rudder deflection and it is limited by ±0.5rad. Two local linear models, SOM-

LLM and GMM-LMM were identified using 6000 samples if input-output data, where the

system is excited by white input uniform on [-0.5,0.5]. A discretisation time step of 0.05s was

used (making the training set correspond to 300s of flight time). The embedding delays for both

the input and the output were found to be 2 using the Lipschitz index. The SOM consisted of a

15x15 rectangular grid, while the GMM had 5 Gaussian modes. Both models were tested on

 198

1000 independently generated test samples generated using a random input sequence. The SOM-

LLM and GMM-LLM performances were 31.7dB and 31.0dB in terms of SER, respectively. In

other modeling problems, it was observed that the GMM-LLM approach required a smaller

number of linear models, in general, compared to the SOM-LLM approach.

 In addition, to system identification, local linear PID controllers were designed for both

models placing the poles of the closed-loop response at 0, 0, 0.05+i0.3 and 0.05-i0.3. For each

linear model, the PID coefficients are set to these locations by adjusting their corresponding λ

vectors. The closed-loop regulation and tracking performances are tested by forcing the system

output to track step changes and smooth sinusoidal changes in the desired output. The tracking

performances of the SOM-LLM and GMM-LLM based PID controllers are shown in Figure 4.8.

As a comparison, the tracking performance of a TDNN-based global adaptive model-controller

pair is also presented in Figure 4.9. Clearly, the local PID controllers outperform the adaptive

globally nonlinear technique in terms of both overshoot and convergence time.

4.6.4 NASA LoFlyte Waverider Aircraft Identification and Control

 The NASA LoFlyte is an unmanned aerial vehicle (UAV) designed by Accurate Automation

Corporation (AAC) and an illustrative picture is shown in Figure 4.10. The LoFlyte program is

an active test program at the Air Force Flight Test Center of the Edwards Air Force Base with

the objective of developing the technologies necessary to design, fabricate and flight test a Mach

5 waverider aircraft [60,61]. The LoFlyte UAV is also used to understand the low speed

characteristics of a hypersonic shape and to demonstrate several innovative flight control

technologies. The task of CNEL is to develop modeling and control strategies for LoFlyte based

solely on input-output data.

 199

 According to classical aerodynamics, the flight dynamics of any rigid body are determined

by movements along or around three body axes: roll, pitch (longitudinal motion) and yaw (lateral

motion). The elevator δe is mainly responsible for controlling the longitudinal motion state

variables (pitch angle, θ and pitch rate, q), the rudder δr primarily controls the lateral motion

state variables (yaw angle, ψ and yaw rate r), the aileron δa mainly controls the roll motion state

variables (roll angle, φ and roll rate, p). Finally, the throttle δt largely controls the aircraft’s

longitudinal speed, while in some aircraft, deflectable thrust vectors might allow yaw and roll

contributions from the engine power. Typically, under certain symmetry assumptions for the

aircraft body, the state dynamics of the rigid-body aircraft are represented around its center of

gravity as follows (see [62] or any standard text book on flight dynamics and control):

 (4.31)
()
(
()

θφθφψ
θφθ

θφθφφ

φθ
φθ

θ

seccossecsin
sincos

tancostansin
/)()(
/)()(

/)()(
/coscos)(
/sincos)(

/sin)(

22

rq
rq

rqp
INqrpqIpqIIr
IMprIrpIIq

ILpqqrIqrIIp
mFguqvpw
mFgwpurv

mFgvrwqu

zzxzyyxx

yyxzxxzz

xxxzzzyy

z

y

x

+=
−=

++=
+−+−=
+−+−=

+−+−=
++−−=
++−−=

+−−−=

&

&

&

&

&

&

&

&

&

)

In (4.31), u, v, w are the speed components of the aircraft along its body x, y, z axes, respectively.

Similarly, p, q, r are angular speeds around these axes and φ, θ, ψ are the Euler angles that define

the rotation matrix between the body coordinate frame and the inertial coordinate frame (e.g., the

north-east-down system in the case of short-duration, short distance flights within the

atmosphere, under the flat-earth assumption). The gravity g is along the down direction of the

inertial frame. The engine power and aerodynamic effects generate the forces Fx, Fy and Fz as

well as the moments L, M, N. The coefficients m, Ixx, Iyy, Izz and Ixz are the aircraft mass and

moments of inertia determined by its geometry.

 200

 The LoFlyte aircraft is simulated using a software by AAC and is assumed to be the true

plant. It is assumed that the throttle is constant and state variables p, q, r, u, v, w are available for

external measurement. The goal of the identification and control problem is to determine local

linear models from the three inputs (aileron, elevator and rudder) to these six state variables

(outputs) and to control them in order to track a desired trajectory of flight.

 Input-output training data is generated using the ACC flight simulator by manually flying the

model aircraft (with a joystick) to imitate a test flight. The embedding dimensions for both input

and the output are selected to be 3. SOM-based local linear models are trained from all three

inputs to all six outputs, quantising the reconstructed state space formed by the vector of delayed

past output values. In these local models, in order to reduce model complexity, the coupling

between the state variables is ignored, while all three inputs are still assumed to affect all six

outputs. In essence, in matrix-vector form, the models are of the form

 (4.32) ∑∑
=

−
=

−+ +=
3

0

3

0
1ˆ

i
ik

T
i

i
ik

T
ik uByAy

where denotes the vector of outputs (the six measured states) and u denotes the vector of

inputs (the three deflector angles). Since the output coupling is ignored, A

ŷ

i are diagonal matrices,

while Bi are full matrices that allow coupling effects from all inputs to all outputs.

 Using 5000 training samples and a 10x10 rectangular SOM grid, whose size was determined

according to the validation set performance (see Figure 4.11), the system identification

performance was found to be 28.12dB, 20.21dB, 28.56dB, 74.73dB, 27.83dB and 37.98dB for

the six outputs, respectively, in terms of SER on a 1000-sample test set. The same data was used

in training a global 12-neuron TDNN model, which achieved 27.63dB, 19.57dB, 27.34dB,

47.56dB, 27.24dB and 36.57dB, respectively for the outputs in the test set.

 201

 An order-0 inverse error dynamic controller was designed for p, q and r according to (4.19)

and (4.21). For comparison, an adaptive TDNN inverse controller based on the TDNN was also

designed for the aircraft. The performances of the controllers are tested in set-point regulation

and arbitrary output tracking. The tracking results of both controller systems are presented in

Figure 4.12 and Figure 4.13 [54]. Clearly the local linear controllers exhibit better overshoot and

convergence speed characteristics compared to the nonlinear counterpart.

4.6.5 NASA Langley Transonic Wind Tunnel Identification and Control

 In this final application example, the performance of the proposed local linear modeling and

control approach in the identification and control of the NASA Langley 16-Foot Transonic

Tunnel will be presented [12]. This wind tunnel, whose picture is shown in Figure 4.14 to

provide some perspective, is driven by a simple bang-zero-bang type control input with three

possible values: -1, 0, +1. The plant output is the Mach number (in the range 0.20 to 1.30)

achieved around the experimental aircraft model whose dynamics are being studied as shown in

Figure 4.15. The possible input value sequences of length p were considered, resulting in a total

of 3p possible sequences. These sequences were partitioned to 9 sets, which were experimentally

determined to meet performance needs with low computational requirements. Seven of these

prototype input sequences were 50-samples long, while the remaining two were only 10-samples

long [12]. For each of these input partitions, the tunnels Mach number responses were clustered

using a 20-node linear SOM. Finally, each neuron of each SOM has a linear predictor of Mach

number associated with it, as in the SOM-LLM framework, that evaluates the suitability of each

input sequence by comparing the predicted Mach number with the desired value in the following

p time steps (either 50 or 10 depending on the input sequence being evaluated). The control input

that produces the best Mach number match to the desired is selected and employed.

 202

 The identified local linear models and associated controllers are tested on the actual tunnel

and the performance is compared to that of an expert human operator and the existing controller

scheme. Typically, acceptable performance is maintaining a Mach number regulation error

within ±0.003 of the set point while completing an angle-of-attack (α) sweep in as small time as

possible (due to power considerations).

 In the first experiment, each controller is required to maintain 0.85 Mach within

specifications for 15 minutes while an α-sweep is completed. Minimum control activity is a plus.

The performance of the three controllers is shown in Figure 4.16.

 The average Mach number of the existing controller, the expert operator and the SOM-LMM

controller (denoted by PMMSC in the figure) are 0.8497, 0.8500 and 0.8497, respectively, with

standard deviations 0.001527, 0.001358 and 0.001226. The amount of time these controllers

were out of tolerance were 46.5s, 34.52s and 33.2s. The L1 norm of the control inputs were 10.6,

12.33 and 6.33, respectively. Clearly, the local linear controllers outperformed both competitors

in terms of meeting tolerance bounds with minimum controller activity.

 As a second test, all controllers were required to track a step-wise changing Mach number set

point, again with as small as possible control effort, in a 28-minute experiment. The Mach

number tracking performances of the controllers are shown in Figure 4.17.

 The existing controller was out of the tolerance bounds for 329s, the expert operator was out

of tolerance for 310s and the SOM-LLM was out of bounds for 266s. Their respective L1 control

input norm values for the duration of this experiment were 424.2, 466.2 and 374.3, again

indicating the superior performance of the proposed local linear control approach.

 203

4.7 Conclusions

 In this chapter, the problem of nonlinear system identification and control system design was

addressed under the divide-and-conquer principle. This principle motivated the use of multiple

local models for system identification in order to simplify the modeling task. Especially in the

case of unknown dynamics, where only input-output data from the plant is available, the

proposed method is able to approximate the nonlinear dynamics of the plant using a piece-wise

linear dynamical model that is optimised solely from the available data. Especially when local

linear models are used as described, it also became possible to design a piece-wise linear

controller for the plant, whose design is based on the identified model.

 The questions of the existence and validity of input-output models as described and utilised

was addressed theoretically using the implicit function inversion theorem that points out the

observability conditions under which such models are possible to build from input-output data

alone. The performance of the proposed local linear modeling scheme and the associated local

linear controllers were tested on a variety of nonlinear dynamical systems including chaotic

systems, a NASA aircraft and the NASA Langley transonic wind tunnel.

 It was seen that the designed closed-loop control systems are extremely successful; in fact, in

the experimental comparisons of performance at the NASA Langley tunnel, the proposed local

linear controllers outperformed the existing computer controller and a human expert operator.

These are encouraging results that motivate the use of this modeling and control technique for

various other control applications. The capabilities of the local linear modeling approach are not

limited to system identification and control applications. There are a wide range of nonlinear

signal processing problems, such as magnetic resonance imaging, speech processing and

 204

computer vision, where the local linear signal processing can be employed to obtain simple but

successful solutions to difficult nonlinear problems.

ACNOWLEDGMENTS

 This work was partially supported by the Accurate Automation Corporation under grant #463

and by NASA under grant NAG-1-02068.

4.8 References

[1] O. Nelles: ‘Nonlinear System Identification’ (Springer, New York, 2001).

[2] I.J. Leontaritis and S.A. Billings: “Input-output parametric models for nonlinear systems

part I: deterministic nonlinear systems”, International Journal of Control, 1985, vol. 41,

no. 2, pp. 303-328.

[3] K.S. Narendra: “Neural networks for control: Theory and practice”, Proceedings of IEEE,

1996, vol. 84, no. 10, pp. 1385-1406.

[4] T.A. Johansen and B.A. Foss: “Constructing NARMAX models using ARMAX models”,

International Journal of Control, 1993, vol. 58, no. 5, pp. 1125-1153.

[5] X. Ni, M. Verhaegen, A.J. Krijgsman and H.B. Verbruggen: “A new method for

identification and control of nonlinear dynamic systems”, Engineering Applications of

Artificial Intelligence, 1996, vol. 9, no. 3, pp. 231-243.

 205

[6] D.M. Walker, N.B. Tufillaro and P. Gross: “Radial-basis models for feedback systems

with fading memory”, IEEE Transactions on Circuits and Systems, 2001, vol. 48, no. 9,

pp. 1147-1151.

[7] B.S. Kim and A.J. Calise: “Nonlinear flight control using neural networks”, Journal of

Guidance, Control and Dynamics, 1997, vol. 20, no. 1, pp. 26-33.

[8] K.S. Narendra, J. Balakrishnan and M.K. Ciliz: “Adaptation and learning using multiple

models, switching and tuning”, IEEE Control Systems Magazine, 1995, vol. 15, no. 3, pp.

37-51.

[9] J.C. Principe, L. Wang and M.A. Motter: “Local dynamic modeling with self-organizing

maps and applications to nonlinear system identification and control”, Proceedings of

IEEE, 1998, vol. 86, no. 11, pp. 2240-2258.

[10] C. H. Lee and M. J. Chung; “Gain-scheduled state feedback control design technique for

flight vehicles”, IEEE Transactions on Aerospace and Electronic Systems, 2001, vol. 37,

no. 1, pp. 173-182.

[11] K.S. Narendra and C. Xiang: “Adaptive control of discrete-time systems using multiple

models”, IEEE Transactions on Automatic Control, 2000, vol. 45, no. 9, pp. 1669-1686.

[12] M.A. Motter: ‘Control of the NASA Langley 16-foot transonic tunnel with the self-

organizing feature map”. Ph.D. dissertation, University of Florida, Gainesville, Florida,

1997.

 206

[13] K.S. Narendra and K. Parthasarathy: “Identification and control of dynamical systems

using neural networks”, IEEE Transactions on Neural Networks, 1990, vol. 1, no. 1, pp.

4-27.

[14] W.T. Miller: “Real-time neural network control of a biped walking robot”, IEEE Control

Systems Magazine, 1994, vol. 14, no. 1, pp. 41-48.

[15] J.D. Boskovic and K.S. Narendra; “Comparison of linear, nonlinear and neural network

based adaptive controllers for a class of fed-batch fermentation process”, Automatica,

1995, vol. 31, no. 6, pp. 817-840.

[16] C.T. Chen: ‘Introduction to linear system theory’ (Holt, Rinehart and Winston, New

York, 1970).

[17] R.C. Dorf and R.H. Bishop: ‘Modern control systems’ (8th ed., Addison, Wesley, New

York, 1998).

[18] K. Ogata: ‘Modern control engineering’ (4th ed., Prentice Hall, 2001).

[19] T. Kohonen: ‘Self-organizing maps’ (Springer, New York 1995).

[20] D. Aeyels: “Generic observability of differentiable systems”, SIAM Journal of Control

and Optimization, 1979, vol. 19, pp. 139-151.

[21] E.D. Sontag: “On the observability of polynomial systems”, SIAM Journal of Control

and Optimization, 1979, vol. 17, pp. 139-151.

 207

[22] F. Takens: “On numerical determination of the dimension of an attractor”, in Dynamical

Systems and Turbulance, (D. Rand and L.S. Young eds.), Warwick 1980, Lecture Notes

in Mathematics, (Springer-Verlag, Berlin, 1981), vol. 898, pp. 366-381.

[23] J. Stark, D.S. Broomhead, M.E. Davies and J. Huke: “Takens embedding theorems for

forced and stochastic systems”, Nonlinear Analysis, Theory Methods and Applications,

1997, vol. 30, no. 8, pp. 5303-5314.

[24] W. Rudin: ‘Principles of mathematical analysis’ (McGraw-Hill, New York, 1976).

[25] R. Murray-Smith and T.A. Johansen: ‘Multiple model approaches to modeling and

control’ (Taylor & Francis, New York, 1997).

[26] J.J. Sidorowich: “Modeling of chaotic time series for prediction, interpolation and

smoothing,” Proceedings of ICASSP’92, 1992, pp. 121-124.

[27] A.C. Singer, G.W. Wornell and A.V. Oppenheim; “codebook prediction: a nonlinear

signal modeling paradigm”, Proceedings of ICASSP’92, 1992, pp. 325-328.

[28] J. Stark, D.S. Broomhead, M.E. Davies and J. Huke; “Takens Embedding Theorems for

Forced and Stochastic Systems”, Nonlinear Analysis: Theory, Methods and Applications,

1997, vol. 30, no. 8, pp. 5303-5314.

[29] J. Walter, H. Ritter and K. Schulten: “Nonlinear prediction with self-organizing maps”,

Proceedings of IJCNN’90, 1990, pp. 589-594.

 208

[30] M. Casdagli: “Nonlinear prediction of chaotic time series”, Physica D, 1989, vol. 35, no.

3, pp. 35-356.

[31] D.M. Walker, N.B. Tufillaro and P. Gross: “Radial-basis models for feedback systems

with fading memory”, IEEE Transactions on Circuits and Systems, 2001, vol. 48, no. 9,

pp. 1147-1151.

[32] X. He and H. Asada: “A new method for identifying orders of input-output models for

nonlinear dynamic systems”, Proceedings of ACC’93, 1993, pp. 2520-2523.

[33] T. Martinetz, H.Ritter and K. Schulten: “Neural-gas network for vector quantization and

its application to time-series prediction,” IEEE Transactions on Neural Networks, 1993,

vol. 4, no. 4, pp. 558-568.

[34] G.J.Mclachlan and D. Peel: ‘Finite mixture models’ (Wiley and New York and 2001).

[35] S. Haykin: ‘Adaptive filter theory’ (4th ed. and Prentice-Hall and New York and 2001).

[36] B. Widrow and S. Stearns: ‘Adaptive signal processing’ (Prentice-Hall, New York,

1985).

[37] B. Schoner: ‘Probabilistic characterization and synthesis of complex driven systems’.

Ph.D. dissertation, MIT, Cambridge, MA, 1996.

[38] D. Erdogmus and J.C. Principe: “An error-entropy minimization algorithm for supervised

training of nonlinear adaptive systems”, IEEE Transactions on Signal Processing, 2002,

vol. 50, no. 7, pp. 1780-1786.

 209

[39] S. Singhal and L. Wu: “Training multilayer perceptrons with the extended Kalman

algorithm”, Proceedings of NIPS’91, 1991, pp. 133-140.

[40] J.C. Principe, Y.N. Rao and D. Erdogmus: “Error whitening wiener filters: theory and

algorithms”, in Least-Mean-Square Adaptive Filters, S. Haykin and B. Widrow (eds),

Wiley, 2003.

[41] B. Fritzke: “Growing cell structures – a self-organizing network for supervised and

unsupervised learning”, IEEE Transactions on Neural Networks, 1994, vol. 7, no. 9, pp.

1441-1460.

[42] S. Haykin: ‘Neural networks: A comprehensive foundation’ (2nd ed., Prentice Hall,

Englewood Cliffs, 1998).

[43] K. Hornik: “Approximation capabilities of multilayer feedforward networks”, Neural

Networks, 1991, vol. 4, pp. 251-257.

[44] G. Cybenko: “Approximation by superposition of a sigmoidal function”, Mathematics of

Control, Signals, Systems, 1989, vol. 2, pp. 303-314.

[45] E. Eskinat, S. Johnson and W.L. Luyben: “Use of Hammerstein models in identification

of nonlinear systems”, AIChE Journal, 1991, vol. 37, pp. 255-268.

[46] J. Cho, J.C. Principe and M.A. Motter: “Local Hammerstein modeling based on self-

organizing map”, Proceedings of NNSP’03, 2003, pp. 809-818.

 210

[47] J. Wray and G.G.R. Green: “Calculation of the Volterra kernels of nonlinear dynamic

systems using an artificial neural network”, Biological Cybernetics, 1994, vol. 71, no. 3,

pp. 187-195.

[48] H.R. Madala and A.G. Ivakhnenko: ‘Inductive learning algorithms for complex systems

modeling’ (CRC Press, Boca Raton, 1994).

[49] K.S. Narendra and J. Balakrishnan: “Adaptive control using multiple models”, IEEE

Transactions on Automatic Control, 1997, vol. 42, no. 2, pp. 171-187.

[50] R.E. Brown, G.N. Maliotis and J.A. Gibby: “PID self-tuning controller for aluminum

rolling mill”, IEEE Transactions on Industry Applications, 1993, vol. 29, no. 3, pp. 578-

583.

[51] K.M. Vu: “Optimal setting for discrete PID controllers”, IEE Proceedings D, 1992, vol.

139, no. 1, pp. 31-40.

[52] J. Bao, J.F. Forbes and P.J. McLellan: “Robust multiloop PID controller design: A

successive semidefinite programming approach”, Industrial and Engineering Chemistry

Research, 1999, vol. 38, pp. 3407-3419.

[53] J. Lan, J. Cho, D. Erdogmus, J.C. Principe, M.Motter and J. Xu: “Local linear PID

controllers for nonlinear control”, to appear in International Journal of Control and

Intelligent Systems, 2005.

 211

[54] J. Cho, J.C. Principe, D. Erdogmus and M.A. Motter: “Modeling and inverse controller

design for an unmanned aerial vehicle based on the self organizing map”, submitted to

IEEE Transactions on Neural Networks, 2003.

[55] J.Y. Hung, W. Gao and J.C. Hung: “Variable structure control: A survey”, IEEE

Transactions on Industrial Electronics, 1993, vol. 40, no. 1, pp. 2-22.

[56] D. Erdogmus: ‘Optimal trajectory tracking guidance of an aircraft with final velocity

constraint’. MS Thesis, Middle East Technical University, Ankara, Turkey, 1999.

[57] S.M. Kay: ‘Modern spectral estimation: Theory and application’ (Prentice Hall,

Englewood Cliffs, 1988).

[58] D. Kaplan and L. Glass: ‘Understanding nonlinear dynamics’ (Springer-Verlag, New

York, 1995).

[59] J.C. Principe, N. Euliano and C. Lefebvre: ‘Neural and adaptive systems: Fundamentals

through simulations’ (Wiley, New York, 1999).

[60] C. Cox, J. Neidhoefer, R. Saeks and G. Lendaris: “Neural adaptive control of

LoFLYTE”, Proceedings of ACC’01, 2001, vol. 4, pp.2913-2917.

[61] C. Cox, K. Mathia and R. Saeks: “Learning flight control and LoFLYTE,” Proceedings of

WESCON’95, 1995, pp.720-723.

[62] L.V. Schmidt: ‘Introduction to aircraft flight dynamics’ (American Institute of

Aeronautics and Astronautics, Reston, VA, 1998).

 212

Figure 4.16. Comparison of the existing controller (left), expert human operator (middle), and the SOM-LLM
controller (right). The achieved Mach numbers for 15 minutes superimposed on the set point and the tolerance
bounds (top), and control inputs produced by the controllers (bottom).

Figure 4.17. Comparison of the existing controller (left), expert human operator (middle), and the SOM-LLM
controller (right). Mach number tracking step changes in set point for 28 minutes (top), and control inputs produced
by the controllers (bottom).

	Chapter4
	Introduction
	Motivation for local linear modeling and time-delay embedding
	Selecting the embedding dimension
	Determining the local linear models
	Clustering the Reconstructed State Vector Using Self-Organising Maps
	Clustering the Reconstructed State Vector Using Gaussian Mixture Models
	Extending the Methodology to Local Nonlinear Modeling

	Designing the local linear controllers
	Inverse Error Dynamics Controller Design
	Selecting the Error Dynamics Pole Locations to Suppress Disturbance Effects

	Simulations
	Chaotic Time Series Prediction
	Synthetic Nonlinear System Identification
	Simplified Lateral Missile Dynamics Identification and Control
	NASA LoFlyte Waverider Aircraft Identification and Control
	NASA Langley Transonic Wind Tunnel Identification and Control

	Conclusions
	
	ACNOWLEDGMENTS

	References

	ieee_figures

