
 
 

ERROR WHITENING WIENER FILTERS: 
THEORY AND ALGORITHMS  

 
 
 
 
 

Jose C. Principe, Yadunandana N. Rao, Deniz Erdogmus 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Computational NeuroEngineering Laboratory 
EB 451 Electrical Engineering Department 

University of Florida 
Gainesville, FL 32611 

 
 

{principe, yadu, deniz}@cnel.ufl.edu 

 1



10.1. INTRODUCTION 
 
The mean-squared error (MSE) criterion has been the workhorse of linear 

optimization theory due to the simple and analytically tractable structure of linear least 
squares [Farhang, 1998; Haykin, 1996]. In adaptive filter theory, the Wiener-Hopf 
equations are more commonly used owing to the extension of least squares to functional 
spaces proposed by Wiener [Farhang, 1998; Haykin, 1996]. However, for finite impulse 
filters (vector spaces) the two solutions coincide. There are a number of reasons behind 
the widespread use of the Wiener filter: firstly, the Wiener solution provides the best 
possible filter weights in the least squares sense; secondly, there exist simple and elegant 
optimization algorithms like the Least Mean Squares (LMS), Normalized Least Mean 
Squares (NLMS), and Recursive Least Squares (RLS) to find or closely track the Wiener 
solution in a sample-by-sample fashion, suitable for on-line adaptive signal processing 
applications [Farhang, 1998]. There are also a number of important properties that help 
us understand the statistical properties of the Wiener solution, namely the orthogonality 
of the error signal to the input vector space as well as the whiteness of the predictor error 
signal for stationary inputs, provided the filter is long enough  [Farhang, 1998; Haykin, 
1996]. However, in a number of applications of practical importance, the error sequence 
produced by the Wiener filter is not white. One of the most important is the case of noisy 
inputs. In fact, it has been long recognized that these MSE-based filter optimization 
approaches are unable to produce the optimal weights associated with the noise free input 
due to the biasing of the input covariance matrix (autocorrelation in the case of FIR 
filters) by the additive noise [Rao & Principe, 2002; Douglas, 1996]. Since noise is 
always present in real-world signals, the optimal filter weights offered by the MSE 
criterion and associated algorithms are inevitably inaccurate; this might hinder the 
performance of the designed engineering systems that require robust parameter 
estimations. 

There are several techniques to suppress the bias in the MSE-based solutions in the 
presence of noisy training data [Cadzow, 1994; Lemmerling, 1999; Yeredor, 2000; So, 
1999; Gao, Ahmad, & Swamy, 1994]. Total Least Squares (TLS) is one of the popular 
methods, due to the principled way of eliminating the effect of noise on the optimal 
weight vector solution [Feng, Bao, & Jiao, 1998; Golub & van Loan, 1979; Golub & van 
Loan, 1989]. Major drawbacks of TLS are the requirements for accurate model order 
estimation, an identical noise variance in the input and desired signals, and the SVD 
computations that severely limit its practical applicability [Golub & van Loan, 1989; Rao 
& Principe, 2002; de Moor, 1994; Douglas, 1996]. TLS is known to perform poorly when 
these assumptions are not satisfied [Yeredor, 2000; Rao & Principe, 2002]. Another 
important class of algorithms that can effectively eliminate noise in the input data is 
subspace Wiener filtering [Farhang, 1998; Haykin, 1996; Rao, 2000]. Subspace 
approaches try to minimize the effect of noise on the solution by projecting the input data 
vector onto a lower dimensional space that spans the input signal space. Traditional 
Wiener filtering algorithms are then applied to the projected inputs, which exhibit an 
improved signal-to noise ratio (SNR). Many subspace algorithms are present in the 
literature and it is beyond the scope of this chapter to mention all of them. The drawbacks 
of these methods include proper model order estimation, increased computational 
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Figure 10.1. Schematic diagram of EWWF adaptation. 
 

requirements and sufficiently small noise power that helps discriminate signal and noise 
during the subspace dimensionality selection [Rao, 2000].  

In this chapter, we will present a completely different approach to produce a 
(partially) white noise sequence at the output of Wiener filters in the presence of noisy 
inputs. We will approach the problem by introducing a new adaptation criterion that 
enforces zero autocorrelation of the error signal beyond a certain lag; hence the name 
error whitening Wiener filters (EWWF). Since we want to preserve the on-line properties 
of the adaptation algorithms, we propose to expand the error autocorrelation around a lag 
larger than the filter length using Taylor series. Hence, instead of an error signal we end 
up with an error vector, with as many components as the terms kept in the Taylor series 
expansion. A schematic diagram of the proposed adaptation structure is depicted in 
Figure 10.1 The properties of this solution are very interesting, since it contains the 
Wiener solution as a special case, and for the case of two error terms, the same analytical 
tools developed for the Wiener filter can be applied with minor modifications.  Moreover, 
when the input signal is contaminated with additive white noise, the EWWF produces the 
optimal solution for the noise free input signal, with the same computational complexity 
of the Wiener solution.   

The organization of this chapter is as follows: First, we will present the motivation 
behind using the autocorrelation of the residual error signal in supervised training of 
Wiener filters. This will clearly demonstrate the reasoning behind the selected 
performance function, which will be called the error whitening criterion (EWC). Second, 
an analytical investigation of the mathematical properties of the EWWF and the optimal 
filter weight estimates will be presented. The optimal selection of parameters will be 
followed by demonstrations of the theoretical expectations on noise rejecting properties 
of the proposed solution through Monte Carlo simulations performed using analytical 
calculations of the necessary autocorrelation functions. Next, we will derive the 
Recursive Error Whitening (REW) algorithm that finds the proposed error whitening 
Wiener filter solution using sample-by-sample updates in a fashion similar to the well-
known RLS algorithm. This type of recursive algorithms require O(n2) complexity in the 
number of weights. Finally, we address the issues with the development of the gradient-
based algorithm for EWWF. We will derive a gradient-based LMS-type update algorithm 
for the weights that will converge to the vicinity of the desired solution using stochastic 
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updates. Theoretical bounds on step size to guarantee convergence and comparisons with 
MSE counter-parts will be provided. 

 
10.2. MOTIVATION FOR ERROR WHITENING WIENER FILTERS 

 
The classical Wiener solution yields a biased estimate of the reference filter weight 

vector in the presence of input noise. This problem arises due to the contamination of the 
input signal autocorrelation matrix with that of the additive noise. If a signal is 
contaminated with additive white noise, only the zero-lag autocorrelation is biased by the 
amount of the noise power. Autocorrelation at all other lags still remain at their original 
values. This observation rules out MSE as a good optimization criterion for this case. In 
fact, since the error power is the value of the error autocorrelation function at zero lag, 
the optimal weights will be biased because they depend on the input autocorrelation 
values at zero-lag. The fact that the autocorrelation at non-zero lags are unaffected by the 
presence of noise will be proved useful in determining an unbiased estimate of the filter 
weights.  

 
10.2.1 Analysis of the Autocorrelation of the Error Signal 

The question that arises is what lag should be used to obtain the true weight vector in 
the presence of white input noise. Let us consider the autocorrelation of the training error 
at non-zero lags. Suppose noisy training data of the form  is provided, where ))(),(( tdtx

)()(~)( ttt vxx +=  and )()(~)( tutdtd +=  with )(~ tx  being the sample of the noise-free 
input vector at time t (time is assumed to be continuous),  being the additive white 
noise vector on the input vector, 

)(tv
)(~ t

vx tttu ()(

d  being the noise-free desired output and u  being 
the additive white noise on the desired output. Suppose that the true weight vector of the 
reference filter that generated the data is  (moving average model). Then the error at 
time t is 

)(t

Tw
wT))tdte ~())()(~()( =

T
T ttd wx )(

+−+ , where  is the estimated weight vector. 
Equivalently, when the desired response belongs to the subspace of the input, i.e. 

w

~)(~
= , the error can be written as 

 
 wvwwxwvxwx )()())((~))()(~())()(~()( ttuttttutte T

T
TT

T
T −+−=+−+=  (10.1) 

 
Given this noisy training data, the MSE-based Wiener solution will not yield a 

residual training error that has zero autocorrelation for a number of consecutive lags, 
even when the contaminating noise signals are white. From (10.1) it is easy to see that the 
error will have a zero autocorrelation function if and only if 

 
• the weight vector is equal to the true weights of the reference model,  
• the lag is beyond the Wiener filter length.  
 
During adaptation, the issue is that the filter weights are not set at w , so the error 

autocorrelation function will be generally nonzero. Therefore a criterion to determine the 
true weight vector when the data is contaminated with white noise should be to force the 

T
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long lags (beyond the filter length) of the error autocorrelation function to zero by using 
an appropriate criterion. This is exactly what the error-whitening criterion (EWC) that 
we propose here will do. There are two interesting situations that we should consider: 
What happens when the selected autocorrelation lag is smaller than the filter length? 
What happens when the selected autocorrelation lag is larger than the lag at which the 
autocorrelation function of the input signal vanishes? 

The answer to the first question is simply that the solution will be still biased since it 
will be obtained by inverting a biased input autocorrelation matrix. If the selected lag is 
L<m (m order of the reference filter), the bias will occur at the Lth sub-diagonal of the 
autocorrelation matrix, where the zero-lag autocorrelation of the input signal shows up. In 
the special case of MSE, the selected lag is zero and the zeroth sub-diagonal becomes the 
main diagonal, thus the solution is biased by the noise power. 

The answer to the second question is practically important. The MSE solution is quite 
stable because it is determined by the inverse of a diagonally dominant Toeplitz matrix. 
The diagonal dominance is guaranteed by the fact that the autocorrelation function of a 
real-valued function has a peak at zero-lag. If other lags are used in the criterion, it is 
important that the lag is selected such that the corresponding autocorrelation matrix 
(which will be inverted) is not ill conditioned. If the selected lag is larger than the length 
of the input autocorrelation function, then the autocorrelation matrix becomes singular 
and a solution cannot be obtained. Therefore, lags beyond the input signal correlation 
time should also be avoided in practice. 

 
10.2.2 The Structure of the Error Whitening Wiener Filters  

The observation that constraining the higher lags of the error autocorrelation function 
to zero yields unbiased weight solutions is quite significant. Moreover, the algorithmic 
structure of this new solution and the lag-zero MSE solution are still very similar. The 
noise-free case helps us understand why this similarity occurs. Suppose the desired signal 
is generated by the following equation: d T

T tt wx )(~)(~
=

)
, where  is the true weight 

vector. Now multiply both sides by 
Tw

(~ ∆−tx  from the left and then take the expected 
value of both sides to yield TwT ttE xx )](tEtd x ~)(~[)](~)(~[

T tt x (

∆−=

Tw)]

∆− . Similarly, we can 

obtain EtdtE xx ~)(~[)](~)(~[ =∆− ∆− . Adding the corresponding sides of these 
two equations yields  

 
 T

TT ttttEtdttdtE wxxxxxx )](~)(~)(~)(~[)](~)(~)(~)(~[ ∆−+∆−=∆−+∆−  (10.2) 
 

This equation is similar to the standard Wiener-Hopf equation 

T
T ttEtdtE wxxx )](~)(~[)](~)(~[ = . Yet, it is different due to the correlations being evaluated 

at a lag other than zero, which means that the weight vector can be determined by 
constraining higher order lags in the error autocorrelation.  

 
10.2.3 How to Train EWWF 

Now that we have described the structure of the solution, let us address the issue of 
training this new class of optimum filters that we called error whitening Wiener filters 
(EWWF). Adaptation exploits the sensitivity of the error autocorrelation with respect to 
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the weight vector of the adaptive filter. We will formulate the solution in continuous time 
first, for the sake of simplicity. If the support of the impulse response of the adaptive 
filter is of length m, we evaluate the derivative of the error autocorrelation function with 
respect to the lag ∆, where  are both real numbers. Assuming that the noises in the 
input and desired are uncorrelated to each other and the input signal, we get, 

m≥∆

 

[ ]

[ ]

[ ]

[ ] )()(~)(~2

)()(~)(~)(

))()()()()(())((~)(~)(

))()())((~)()()())((~(

)]()([)(

wwxx
w

wwxxww
w

wvwvwwxxww
w

wvwwxwvwwx
ww

−∆−−=
∂

−∆−−∂
=

∂

∆−−∆−−+−∆−−∂
=

∂

∆−−∆−+−∆−−+−∂
=

∂
∆−∂

=
∂

∆∂

T
T

T
TT

T

TT
T

TT
T

T
T

TT
T

T

e

ttE

ttE

ttuttuttE

ttutttutE

teteEρ

  (10.3) 

  
The identity in (10.3) immediately tells us that the sensitivity of the error autocorrelation 
with respect to the weight vector becomes zero, i.e., 0w =∂∆∂ /)(eρ , if 0ww =− )( T . 
This observation emphasizes the following practically important conclusion: when given 
training data that is generated by a linear filter, but contaminated with white noise, it is 
possible to derive simple adaptive algorithms that could determine the underlying filter 
weights without bias. Furthermore, if ( )ww −T  is not in the null space of 

)](~)(~[ ∆−ttE Txx , then only 0ww =− )( T  makes 0=∆)(eρ  and 0w =∂∆∂ /)(eρ . But 
looking at (10.3), we conclude that a proper delay depends on the autocorrelation of the 
input signal that is, in general, unknown. Therefore, the selection of the delay ∆ is 
important. One possibility is to evaluate the error autocorrelation function at different 
lags  and check for a non zero input autocorrelation function for that delay, which 
will be very time consuming and inappropriate for on-line algorithms.  

m≥∆

 Instead of searching for a good lag-∆, consider the Taylor series approximation of the 
autocorrelation function around a fixed lag-L, where , mL ≥
 

 
K&&&

K&&&

+−∆−+−∆−−−=

+−∆+−∆+≈∆

2

2

))](()([
2
1))](()([)]()([

))((
2
1))(()()(

LLteteELLteteELteteE

LLLLL eeee ρρρρ
  (10.4) 

 
 In (10.4), e  and  represent the derivatives of the error signal with respect to 
the time index. Notice that we do not take the Taylor series expansion around zero-lag for 
the reasons indicated above. Moreover, L should be less than the correlation time of the 
input, such that the Taylor expansion has a chance of being accurate. But since we bring 
more lags in the expansion, the choice of the lag becomes less critical than in (10.3). In 
principle, the more terms we keep in the Taylor expansion the more constraints we are 

)(t& )(te&&
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imposing on the autocorrelation of the error in adaptation. Therefore, instead of finding 
the weight vector that makes the actual gradient in (10.3) zero, we find the weight vector 
that makes the derivative of the approximation in (10.4) with respect to the weight vector 
zero.  
 If the adaptive filter is operating in discrete time instead of continuous time, the 
differentiation with respect to time can be replaced by a first-order forward difference, 

. Higher order derivatives can also be approximated by their 
corresponding forward difference estimates, e.g., 

)()()( Lnenene −−=&

)2()(2)()( LneLnenene −+−−=&& , etc. 
Although the forward difference normally uses two consecutive samples, for reasons that 
will become clear in the following sections of the chapter, we will utilize two samples 
separated by L samples in time. The first-order truncated Taylor series expansion for the 
error autocorrelation function for lag ∆ evaluated at L becomes, 
  

 
)]()([)1()]([)(

)))](()()(([)]()([)(
2 LneneELneEL

LLneneneELneneEe

−−∆++−∆−=

−∆−−−−≈∆ρ
 (10.5) 

 
Analyzing (10.5) we remark another advantage of the Taylor series expansion because 
the familiar MSE is part of the expansion. Notice also that as one forces , the 
MSE term will disappear and only the lag-L error autocorrelation will remain. On the 
other hand, as  only the MSE term will prevail in the autocorrelation function 
approximation. Introducing more terms in the Taylor expansion will bring in error 
autocorrelation constraints from lags iL.  

L→∆

1−→∆ L

 
10.2.4 The Error Whitening Criterion 
 We are now in a position to formulate the error-whitening adaptation criterion. 
Motivated by (10.5) we designed the EWC to involve an arbitrary weighting of the two 
terms  and e , because yet there is no clear understanding of the trade-offs. 
Therefore, the EWC performance function for discrete time filtering can be written as 

)(ne )(n&

 
  (10.6) )]([)]([)( 22 neEneEJ &β+=w
 
where β is a parameter, or equivalently  
 
  (10.7) )]()([2)]([)21()( 2 LneneEneEJ −−+= ββw
 
which has the same form as in (10.5). The goal is to minimize  because this will 
enforce minimal autocorrelation at both zero and L lags. Notice that when 

)(wJ
0=β  we 

recover the MSE in (10.6) and (10.7). Similarly, we would have to select  in order 
to make the first-order expansion identical to the exact value of the error autocorrelation 
function. Substituting the identity 

L=∆

)()21( L−∆−=+ β , and using L=∆ , we observe that 
2/1−=β  eliminates the MSE term from the criterion. Interestingly, this value will 

appear in the following discussion, when we optimize β in order to reduce the bias in the 
solution introduced by input noise.  
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 The same criterion can also be obtained by considering performance functions of the 
form 
 

 
[ ]

K&&&
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222
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T

γβ

γβw
 (10.8) 

 
where the coefficients β, γ, etc. are assumed to be positive. Notice that (10.8) is the L2 
norm of a vector of criteria. The components of this vector consist of , , , 
etc. Due to the equivalence provided by the difference approximations for derivative, 
these terms constrain the error autocorrelation at lags iL as well as the error power as seen 
in (10.8). The number of terms included in the Taylor series approximation for the error 
autocorrelation determines how many constraints are present in the vector of criteria. 
Therefore, the EWWF utilizes an error vector (see Figure 10.1), instead of the error 
signal utilized in the conventional Wiener filter. Our aim is to force the error signal as 
close as possible to becoming white (at lags exceeding the filter length), but these 
multiple lag options have not been investigated yet. 

)(ne )(ne& )(ne&&

 In the following sections, we will elaborate on the properties of this performance 
function. Specifically, we will consider the gradient (sensitivity) of (10.6) with respect to 
the weight vector of the adaptive filter and analyze the properties of the solution that 
makes this gradient equal to zero, as suggested by (10.3). It will become clear that in 
order to find the true weight vector of a reference filter in discrete-time operations, 
equating this mentioned gradient to zero will suffice. Even in the presence of noise, the 
true weights will be accessible by proper selection of the parameter β. 
 
10.3.  PROPERTIES OF THE ERROR WHITENING CRITERION 

 
10.3.1 Shape of the Performance Surface 

Suppose that noise-free training data of the form ))(~),(~( ndnx

Tw)
, generated by a linear 

system with weight vector  through Tw T nnd x (~)(~
=

Tw
mℜ

, is provided. Assume without 
loss of generality that the adaptive filter and the reference filter are of the same length. 
This is possible since it is possible to pad  with zeros if it is shorter than the adaptive 
filter. Therefore, the input vector n ∈)(~x , the weight vector  and the desired 
output 

mℜ∈Tw
ℜ∈)(~ nd . The quadratic form in (10.6) defines the specific EWC we are 

interested in, and its unique stationary point gives the optimal solution for the EWWF. If 
0≥β , then this stationary point is a minimum. Otherwise, the Hessian of (10.6) might 

have mixed-sign eigenvalues or even all-negative eigenvalues. We demonstrate this fact 
with sample performance surfaces obtained for 2-tap FIR filters using 2/1−=β . For 
three differently colored training data, we obtain the EWC performance surfaced shown 
in Figure 10.2. In each row, the MSE performance surface, the EWC cost contour plot, 
and the EWC performance surface are shown for the corresponding training data. The 
eigenvalue pairs of the Hessian matrix of (10.6) are (2.35,20.30), (-6.13,5.21), and (-
4.08,-4.14), for these representative cases in Figure 10.2. Clearly, it is possible for (10.6)   
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Figure 10.2. The MSE performance surfaces, the EWC contour plot, and the EWC 
performance surface for three different training data sets and 2-tap adaptive FIR filters.  
 
to have a stationary point that is a minimum, a saddle point, or a maximum and we start 
to see the differences brought about by the EWC. The performance surface is a weighted 
sum of paraboloids, which will complicate gradient-based adaptation, but will not affect 
search algorithms utilizing curvature information. 
 
10.3.2 Analysis of the Noise-free Input Case 
 
Theorem 10.1. The stationary point of the quadratic form in (10.6) is given by 
 
 )~~()~~( 1

* QPSRw ββ ++= −  (10.9) 
 
where we defined )](~)(~[~ nnE Txx=R , )](~)(~[~ nnE TxxS &&= , )](~)(~[~ ndnE xP = , 

)](
~

)(~[~ ndnE &&xQ = .  
 
Proof. Substituting the proper variables in (10.6), we obtain the following explicit 
expression for J(w). 
 

 wQPwSRww TTndEndEJ )~~(2)~~()](
~

[)](~[)( 22 βββ +−+++= &  (10.10) 
Taking the gradient with respect to w and equating to zero yields 
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 Notice that selecting 0=β  in (10.6) reduces the criterion to MSE and the optimal 
solution, given in (10.9), reduces to the Wiener solution. Thus, the Wiener filter is a 
special case of the EWWF solution (though not optimal for noisy inputs, as we will show 
later). 
 
Corollary 1. An equivalent expression for the stationary point of (10.6) is given by 
 
 [ ] [ LL PPRRw ]~~)21(~~)21(

1
* ββββ −+−+=

−
 (10.12) 

 
where we defined the matrix )](~)(~)(~)(~[~ LnnnLnE TT

L −+−= xxxx

)]

R  and the vector 

(~)(~)(~)(~[~ L−ndnndLnEL +−= xxP . Notice that the interesting choice 2/1−=β  yields 

LL PRw ~~ 1
*

−= . 
 
Proof. Substituting the definitions of R~ , S~ , P~ , Q~ , and then recollecting terms to obtain 

LR~  and LP~  yields the desired result. 
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From these results we deduct two extremely interesting conclusions: 
 
Lemma 1. (Generalized Wiener-Hopf Equations) In the noise-free case, the true weight 
vector is given by LTL PwR ~~ = . (This result is also true for noisy data.) 
 
Proof. This result follows immediately from the substitution of T

T nnd wx )(~)(~
=  and 

T
T LnLnd wx )(~)(~

−=−  in the definitions of LR~  and LP~ . 
 
Lemma 2. In the noise-free case, regardless of the specific value of β , the optimal 
solution is equal to the true weight vector, i.e., Tww =* . 
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Proof. This result follows immediately from the substitution of the result in Lemma 1 into 
the optimal solution expression given in (10.9). 
 
 The result in Lemma 1 is especially significant, since it provides a generalization of 
the Wiener-Hopf equations to autocorrelation and cross correlation matrices evaluated at 
different lags of the signals. In these equations, L represents the specific correlation lag 
selected, and the choice L=0 corresponds to the traditional Wiener-Hopf equations. The 
generalized Wiener-Hopf equations are essentially stating that, the true weight vector can 
be determined by exploiting correlations evaluated at different lags of the signals, and we 
are not restricted to the zero-lag correlations as in the Wiener solution. 
 
10.3.3 Analysis of the Noisy Input Case 
 Now, suppose that we are given noisy training data , where ))(),(( ndnx

)()(~)( nnn vxx +=  and )()(~)( nundnd +=

)]()([ nnE Tvv=

. The additive noise on both signals are zero-
mean and uncorrelated with each other and with the input and desired signals. Assume 
that the additive noise, u(n), on the desired is white (in time) and let the autocorrelation 
matrices of v(n) be V , and . 
Under these circumstances, we have to estimate the necessary matrices to evaluate (10.9) 
using noisy data. These matrices evaluated using noisy data, 

)]()([ LnLnE T
L −−= vvV )()( nn T+ vv

R , , , and Q  will 
become (see Appendix B for details) 

S P
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Finally, the optimal solution estimate of EWC, when presented with noisy input and 
desired output data, will be 
 

 ] (10.15) [ ]
[ ] [ LLL

LLL

PPVRVR

PPPVRVRVR

QPSRw

~~)21(~)~)(21(

)~~2(~)~)~(2()~(

)()(ˆ

1

1

1
*

βββββ

ββ

ββ

−+−−++=

−+−−+++=

++=

−

−

−

[
]

 
Theorem 10.2. (EWWF Noise-Rejection Theorem) In the noisy-input data case, the 
optimal solution obtained using EWC will be identically equal to the true weight vector if 
and only if 2/1−=β , 0R ≠L

~ , and 0V =L . There are two situations to consider: 
• When the adaptive linear system is an FIR filter, the input noise vector vk consists 

of delayed versions of a single dimensional noise process. In that case, V 0=L  if 
and only if , where m is the filter length and the single dimensional noise 
process is white. 

mL ≥
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• When the adaptive linear system is an ADALINE, the input noise is a vector 
process. In that case, V 0=L  if and only if the input noise vector process is white 
(in time) and . The input noise vector may be spatially correlated. 1≥L

 
Proof. Sufficiency of the first statement is immediately observed by substituting the 
provided values of β  and V . Necessity is obtained by equating (10.15) to  and 
substituting the generalized Wiener-Hopf equations provided in Lemma 1. Clearly, if 

L Tw

0R =L
~ , then there is no equation to solve, thus the weights cannot be uniquely 
determined using this value of L. The statement regarding the FIR filter case is easily 
proved by noticing that the temporal correlations in the noise vector diminish once the 
autocorrelation lag becomes greater than equal to the filter length. The statement 
regarding the ADALINE structure is immediately obtained from the definition of a 
temporally white vector process. 
 
10.4.   SOME PROPERTIES OF EWWF ADAPTATION 
 
10.4.1 Orthogonality of Error to Input 
 An important question regarding the behavior of the optimal solution obtained using 
the EWC criterion is the relationship between the residual error signal and the input 
vector. In the case of MSE, we know that the Wiener solution results in the error to be 
orthogonal to the input signal, i.e., 0x =)]()([ nneE  [Farhang, 1998; Haykin, 1996]. 
Similarly, we can determine what the EWC criterion will achieve. 
 
Lemma 3. At the optimal solution of EWC, the error and the input random processes 
satisfy )]()([)21()]()()()([ nneEnLneLnneE xxx ββ +=−+− , for all . 0≥L
 
Proof. We know that the optimal solution of EWC for any  is obtained when the 
gradient of the cost function with respect to the weights is zero. Therefore, 

0≥L
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 It is interesting to note that if 2/1−=β , then we obtain 

 for all L. On the other hand, since the criterion 
reduces to MSE for 

0xx =−+− )]()()()([ nLneLnneE
0=β , then we obtain 0x =)]()([ nneE . The result shown in (10.16), 

if interpreted in terms of Newtonian physics, reveals an interesting insight as to the 
behavior of the EWC criterion at its optimal solution (regardless of the length of the 
reference filter that created the desired signal). In a simplistic manner, this behavior could 
be summarized by the following statement: The optimal solution of EWC tries to 
decorrelate the residual error from the estimated future value of the input vector (see 
Appendix C for details). 
 The case where 2/1−=β  is especially interesting, because it results in complete 
noise rejection. Notice that, in this case, since the optimal solution is equal to the true 
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weight vector, the residual error is given by e , which is composed 
purely of the noise in the training data. Certainly, this is the only way that the adaptive 
filter can achieve 

T
T nnun wv )()()( −=

0xx =−+− )]() nL()()([ neLnneE
0x

 for all L values, since 
x =− )]() nLn

0<

=− ([)]()([ eELnneE  for this error signal. Thus, in this special case, the 
EWWF not only orthogonalizes the instantaneous error and input signals, but it 
orthogonalizes all lags of the error from the input.  

β

2/1−=β

 
10.4.2 Relationship to Entropy Maximization 
 Another interesting property that the EWWF solution exhibits is its relationship with 
entropy. Notice that when , the optimization rule tries to minimize MSE, yet it tries 
to maximize the separation between samples of errors, simultaneously. We could regard 
the sample separation as an estimate of the error entropy. In fact, the entropy estimation 
literature is full of methods based on sample separations [Tarasenko, 1968; Bickel & 
Breiman, 1983; Hall, 1984; Beirlant & Zuijlen, 1985; Kozachenko & Leonenko, 1987; 
Beck & Schlogl, 1993; Tsybakov & van der Meulen, 1994]. Specifically the case 

, finds the perfect balance between entropy and MSE that allows us to 
eliminate the effect of noise on the solution. Recall that the Gaussian density displays 
maximum entropy among distributions of fixed variance. In the light of this fact, the aim 
of EWWF could be understood as finding the minimum error variance solution, while 
keeping the error close to Gaussian. Notice that, due to central limit theorem, the error 
signal will be closely approximated by a Gaussian density when there are a large number 
of taps.  
 
10.4.3 Model Order Selection 
 Model order selection is another important issue in adaptive filter theory. The actual 
desired behavior from an adaptive filter is to find the right balance between 
approximating the training data as accurately as possible and generalizing to unseen data 
with precision [Bishop, 1995]. One major cause of poor generalization is known to be 
excessive model complexity [Bishop, 1995]. Under these circumstances, the designer’s 
aim is to determine the least complex adaptive system (which translates to smaller 
number of weights in the case of linear systems) that minimizes the approximation error. 
Akaike’s information criterion [Akaike, 1974] and Rissanen’s minimum description 
length [Rissanen, 1989] are two important theoretical results regarding model order 
selection. Such methods require the designer to evaluate an objective function, which is a 
combination of MSE and the filter length or the filter weights, using different lengths of 
adaptive filters. The EWC criterion successfully determines the length of the true filter 
(assumed FIR), even in the presence of additive noise, provided that the trained adaptive 
filter is sufficiently long. In the case of an adaptive filter longer than the reference filter, 
the additional taps will decay to zero indicating that a smaller filter is sufficient to model 
the data. This is exactly what we would like an automated regularization algorithm to 
achieve: determining the proper length of the filter without requiring external discrete 
modifications on this parameter. Therefore, EWC extends the regularization capability of 
MSE to the case of noisy training data. Alternatively, EWC could be used as a criterion 
for determining the model order in a fashion similar to standard model order selection 
methods. Given a set of training samples, one could start solving for the optimal EWC 
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solution (using 2/1−=β ) for various lengths of the adaptive filter. As the length of the 
adaptive filter is increased past the length of the true filter, the error power of the EWC 
solution will become constant. Observing this point of transition from variable to 
constant error power will tell the designer exactly what the filter order should be. 
 
10.4.4 The Effect of β on the Weight Error Vector 
 The effect of the cost function free parameter β on the accuracy of the solution 
(compared to the true weight vector that generated the training data) is another crucial 
issue. In fact, it is possible to determine the dynamics of the weight error as a function of 
β. This result is provided in the following lemma. 
 
Lemma 4. (The Effect of β on the EWWF) In the noisy training data case, the derivative 
of the error vector between the optimal EWC solution and the true weight vector, i.e., 

, with respect to β is given by Twwε −= ** ˆˆ
 

 [ ] [ TLLL wRεRRRVR
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ββ

β
]  (10.17) 

 
Notice that Twε 2/ˆ

2/1* =∂
−→β

β∂ . 

 
Proof. Recall from (10.15) that in the noisy data case, the optimal EWWF solution is 
given by [ ] [ ]LLL PPVRVRw βββββ −+−−++= − )21())(21(ˆ 1

*

11 )/( −− ∂∂−= AAA β
2/1

. Using the chain rule 
for the derivative and the fact that for any nonsingular matrix A(β), 

, the result in (10.17) follows from straightforward 
derivation. In order to get the derivative as

1 /− ∂∂A β
−→β , we substitute this value and 

.  0ε =*ˆ
 The significance of Lemma 4 is that it shows that no finite β value will make this 
error derivative zero. The matrix inversion, on the other hand, approaches to zero for 
unboundedly growing β. In addition, it could be used to determine the Euclidean error 
norm derivative, β∂/ˆ 2

2*ε∂ .  
 
10.5. NUMERICAL CASE STUDIES USING THE THEORETICAL SOLUTION 
 
 In the preceding sections, we have built the theory of the error-whitening criterion for 
linear adaptive filter optimization. We have investigated the behavior of the optimal 
solution as a function of the cost function parameters as well as determining the optimal 
value of this parameter in the noisy training data case. This section is designed to 
demonstrate these theoretical results in numerical case studies with Monte Carlo 
simulations. In these simulations, the following scheme will be used to generate the 
required autocorrelation and crosscorrelation matrices. 
 Given the scheme depicted in Figure 10.3, it is possible to determine the true analytic 
auto/cross-correlations of all signals of interest, in terms of the filter coefficients and the 
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noise powers. Suppose ξ , v~ , and u  are zero-mean white noise signals with powers , 
, and , respectively. Suppose that the coloring filter h and the mapping filter w are 

unit-norm. Under these conditions, we obtain 

2
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2
vσ 2

uσ
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 For each combination of SNR from {-10dB,0dB,10dB}, β from {-0.5,-0.3,0,0.1}, m 
from {2,…,10}, and L from {m,…,20} we have performed 100 Monte Carlo simulations 
using randomly selected 30-tap FIR coloring and n-tap mapping filters. The length of the 
mapping filters and that of the adaptive filters were selected to be equal in every case. In 
all simulations, we used an input signal power of , and the noise powers =  
are determined from the given SNR using . The matrices 

12 =xσ
log10 10

2
vσ 2

uσ
)/( 22

vxSNR σσ= R , , 
, and Q , which are necessary to evaluate the optimal solution given by (10.15) are then 

evaluated using (10.18), (10.19), and (10.20), analytically. The results obtained are 
summarized in Figure 10.4 and Figure 10.5, where for the three SNR levels selected, the 
average squared error norm for the optimal solutions (in reference to the true weights) are 
given as a function of L and n for different β values. In Figure 10.4, we present the 
average normalized weight vector error norm obtained using EWC at different SNR 
levels and using different β values as a function of the correlation lag L that is used in the 
criterion. The filter length is 10 in these results. From the theoretical analysis, we know 
that if the input autocorrelation matrix is invertible, then the solution accuracy should be 
independent of the autocorrelation lag L. The results of the Monte Carlo simulations 
presented in Figure 10.4 conform to this fact. As expected, the optimal choice of 

S
P

2/1−=β  determined the correct filter weights exactly. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10.3. Demonstration scheme with coloring filter h, true mapping filter w, and the 
uncorrelated white signals ξ , v~ , and u .  ˆ
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Another set of results, presented in Figure 10.5, shows the effect of filter length on the 
accuracy of the solutions provided by the EWC criterion. The optimal value of 2/1−=β  
always yields the perfect solution, whereas the accuracy of the optimal weights degrades 
as this parameter is increased towards zero (i.e. as the weights approaches the Wiener 
solution). An interesting observation from Figure 10.5 is that for SNR levels below zero, 
the accuracy of the solutions using sub-optimal β values increases, whereas for SNR 
levels above zero, the accuracy decreases when the filter length is increased. For zero 
SNR, on the other hand, the accuracy seems to be roughly unaffected by the filter length.  
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Figure 10.4. The average squared error-norm of the optimal weight vector as a function 
of autocorrelation lag L for various β values and SNR levels. 
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Figure 10.5. The average squared error-norm of the optimal weight vector as a function 
of filter length m for various β values and SNR levels. 
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 The Monte Carlo simulations performed in the preceding examples utilized the exact 
coloring filter and the true filter coefficients to obtain the analytical solutions. In our final 
case study, we demonstrate the performance of the batch solution of the EWC criterion 
obtained from sample estimates of all the relevant auto- and cross-correlation matrices. In 
these Monte Carlo simulations, we utilize 10,000 samples corrupted with white noise at 
various SNR levels. The results of these Monte Carlo simulations are summarized in the 
histograms shown in Figure 10.6. Each subplot of Figure 10.6 corresponds to 
experiments performed using SNR levels of –10 dB, 0dB, and 10 dB for each column and 
adaptive filter lengths of 4-taps, 8-taps, and 12-taps for each row, respectively. For each 
combination of SNR and filter length, we have performed 50 Monte Carlo simulations 
using MSE ( 0=β ) and EWC ( 2/1−=β ) criteria. The correlation lag is selected to be 
equal to the filter length in all simulations, due to Theorem 10.2. Clearly, Figure 10.6 
demonstrates the superiority of the EWWF in rejecting noise that is present in the training 
data. Notice that in all subplots (i.e., for all combinations of filter length and SNR), 
EWWF achieves a smaller average error norm than MSE. The discrepancy between the 
performances of the two solutions intensifies with increasing filter length. Next, we 
demonstrate the error-whitening property of the proposed EWC solutions. 
 

 

 

 
Figure 10.6. Histograms of the weight error norms (dB) obtained in 50 Monte Carlo 
simulations using 10000 samples of noisy data using MSE (empty bars) and EWC with 

2/1−=β  (full bars). The subfigures in each row use filters with 4, 8, and 12 taps 
respectively. The subfigures in each column use noisy samples at –10, 0, and 10 dB SNR, 
respectively. 
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 From (10.1) we can expect that the error autocorrelation function will vanish at lags 
greater than or equal to the length of the reference filter, if the weight vector is identical 
to the true weight vector. For any other value of the weight vector, the error 
autocorrelation fluctuates at non-zero values. A 4-tap reference filter is identified with a 
4-tap adaptive filter using noisy training data (hypothetical) at an SNR level of 0dB. The 
autocorrelation functions of the error signals corresponding to the MSE solution and the 
EWC solution are shown in Figure 10.7. Clearly, the EWC criterion determines a solution 
that forces the error autocorrelation function to zero at lags greater than or equal the filter 
length (partial whitening of the error). 
 Finally, we address the order selection capability and demonstrate how the EWC 
criterion can be used as a tool for determining the correct filter order, even with noisy 
data, provided that the given input-desired output pair is a moving average process. For 
this purpose, we determine the theoretical Wiener and EWWF (with 2/1−=β  and 

, where m is the length of the adaptive filter) solutions for a randomly selected pair 
of coloring filter, h, and mapping filter w, at different adaptive filter lengths. The noise 
level is selected to be 20 dB, and the length of the true mapping filter is 5. We know from 
our theoretical analysis that if the adaptive filter is longer than the reference filter, the 
EWWF will yield the true weight vector padded with zeros. This will not change the 
MSE of the solution. Thus, if we plot the MSE of the EWWF versus the length of the 
adaptive filter, starting from the length of the actual filter, the MSE curve will remain 
flat, whereas the Wiener solution will keep decreasing the MSE, contaminating the 
solution by learning the noise in the data. Figure 10.8a shows the MSE of the Wiener 
solution as well as the EWWF obtained for different lengths of the adaptive filter using 
the same training data described above. Notice (in the zoomed-in portion) that the MSE 
of the EWWF remains constant starting from 5, which is the filter order that generated 
the data. On the other hand, if we were to decide on the filter order looking at the MSE of 
the Wiener solution, we would select a model order of 4, since the gain in MSE is 
insignificantly small compared to the previous steps from this point on. 
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Figure 10.7. Error autocorrelation function for MSE (dotted) and EWC (solid) solutions. 
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 Figure 10.8b shows the norm of the weight vector error for the solutions obtained 
using the EWC and MSE criteria, which confirms that the true weight vector is indeed 
attained with the EWC criterion once the proper model order is reached.  
 This section aimed at experimentally demonstrating the theoretical concepts set forth 
in the preceding sections of the paper. We have demonstrated with numerous Monte 
Carlo simulations that the analytical solution of the EWC criterion eliminates the effect 
of noise completely if the proper value is used for β. We have also demonstrated that the 
batch solution of EWC (estimated from a finite number of samples) outperforms MSE in 
the presence of noise, provided that a sufficient number of samples are given so that the 
noise autocorrelation matrices diminish as required by the theory. 
 Although we have presented a complete theoretical investigation of the proposed 
criterion and its analytical solution, in practice, on-line algorithms that operate on a 
sample-by-sample basis to determine the desired solution are equally valuable. Therefore, 
in the sequel, we will focus on designing computationally efficient on-line algorithms to 
solve for the EWWF in a fashion similar to the well-known LMS and RLS algorithms. In 
fact, we aim to come up with algorithms that have the same computational complexity 
with these two widely used algorithms. The advantage of these new algorithms will be 
their ability to provide better estimates of the model weights when the training data is 
contaminated with white noise. 
 
10.6. THE RECURSIVE ERROR WHITENING (REW) ALGORITHM 

 
In this section, we will present an on-line recursive algorithm to estimate the optimal 
solution for the error-whitening criterion. Given the estimate of the filter tap weights at 
time instant  the goal is to determine the best set of tap weights at the next iteration 
n that would track the optimal solution. This algorithm, which we call Recursive Error 
Whitening (REW), is similar to the Recursive Least-Squares (RLS). The strongest 
motivation behind proposing the REW algorithm is that it is truly a fixed-point type 
algorithm that tracks, at each iteration, the optimal solution.  

)1( −n
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This tracking nature results in the faster convergence of the REW algorithm [Regalia, 
1995]. This, however, comes at an increase in the computational cost. The REW 
algorithm is O  in complexity (same as the RLS algorithm) and this is a substantial 
increase in the complexity when compared with simple gradient methods that will be 
discussed in a later section. We know that the optimal solution for the error-whitening 
criterion is given by, 

)( 2m
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Letting )()()( nnn SRT β+=  and )()()( nnn QPV β+= , we obtain the following 
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The well known Sherman-Morrison-Woodbury identity or the matrix inversion lemma 
[Golub & van Loan, 1979] states, 
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 Substituting =A , B)1( −nT ])())()(2([ nLnn xxx −−= ββ , 22 xIC = , a 2x2 identity 
matrix and ]))( Ln)(()([ nn −− x=D xx β , we see that (10.22) is obtained. Therefore, 
the recursion for the inverse of  becomes )(nT
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Note that the computation of the above inverse is different (and more involved) than the 
conventional RLS algorithm. It requires the inversion of an extra 2x2 matrix 

. The recursive estimator for  is a simple correlation 
estimator given by, 
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Using  and , an estimate of the filter weight vector at iteration index n is  )(1 n−T )(nV
 
  (10.26) )()()( 1 nnn VTw −=
 
We will define a gain matrix analogous to the gain vector in the RLS case [Haykin, 1996] 
as, 
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Using the above definition, the recursive estimate for the inverse of  becomes, )(nT
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Once again, the above equation is analogous to the Ricatti equation for the RLS 
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In order to derive an update equation for the filter weights, we substitute the recursive 
estimate for V  in (10.26). )(n
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Using (10.28) and recognizing the fact that w  the above 
equation can be reduced to, 
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From (10.29) and (10.32), the weight update equation simplifies to, 
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, where , . 
The apriori error matrix is defined as, 
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Using all the above definitions, we will formally state the weight update equation for the 
REW algorithm as, 
 
  (10.35) )()()1()( nnnn eκww +−=
 
 The overall complexity of (10.35) is  which is comparable to the complexity 
of the RLS algorithm. Unlike the stochastic gradient algorithms that are easily affected by 
the eigenspread of the input data and the type of the stationary point solution (minimum, 
maximum or saddle), the REW algorithm is immune to these problems. This is because it 
inherently makes use of more information about the performance surface by computing 
the inverse of the Hessian matrix 

)( 2mO

SR β+ . A summary of the REW algorithm is given 
below in Table 10.I. 
 

Table 10.I: Summary of the REW algorithm 
Initialize T  is a large positive constant ,)0(1 Ic=− c
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 The convergence analysis of the REW algorithm is similar to the analysis of the RLS 
algorithm, which is dealt in detail in Haykin [Haykin, 1996]. In this article, we will not 
dwell further on the convergence issues of REW algorithm. The REW algorithm as given 
by (10.35) works for the stationary data only. For non-stationary data, tracking becomes 
an important issue and this can be handled by including a forgetting factor in the 
estimation of T  and . This generalization of the REW algorithm with 
forgetting factor is trivial and very similar to the exponentially weighted RLS (EWRLS) 
algorithm [Haykin, 1996]. 

)(1 n− )(nV

 
10.6.1  Estimation of System Parameters in White Noise Using REW 
 The REW algorithm can be used effectively to solve the system identification 
problem in noisy environments. As we have seen before, setting the value of 5.0−=β , 
noise immunity can be gained for parameter estimation. We generated a purely white 
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Gaussian random noise of length 50,000 samples and added this to a colored input signal. 
The white noise signal is uncorrelated with the input signal. The noise free, colored, input 
signal was filtered by the unknown reference filter, and this formed the desired signal for 
the adaptive filter. Since, the noise in the desired signal would be averaged out for both 
RLS and REW algorithms, we decided to use the clean desired signal itself. This will 
bring out only the effects of input noise on the filter estimates. Also, the noise added to 
the clean input is uncorrelated with the desired signal. In the experiment, we varied the 
Signal-to-Noise-Ratio (SNR) in the range –10dB to +10dB. The number of desired filter 
coefficients was also varied from 4 to 12. We then performed 100 Monte Carlo runs and 
computed the normalized error vector norm given by, 
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where,  is the weight vector estimated by the REW algorithm with *w 5.0−=β  after 
50,000 iterations or one complete presentation of the input data and  is the true weight 
vector. In order to show the effectiveness of the REW algorithm, we performed Monte 
Carlo runs using the RLS algorithm on the same data to estimate the filter coefficients. 
Figure 10.9 shows a histogram plot of the normalized error vector norm given in (10.36). 
The solid bars show the REW results and the empty bars denote the results of RLS. It is 
clear that the REW algorithm is able to perform better than the RLS at various SNR and 
tap length settings. In the high SNR cases, there is not much of a difference between RLS 
and REW results. However, under noisy circumstances, the reduction in the parameter 
estimation error with REW is orders of magnitude more when compared with RLS. Also, 
the RLS algorithm results in a rather useless zero weight vector, i.e., w  when the 
SNR is lower than –10dB. It is rather well known that the RLS algorithm results in a 
biased estimate of the filter parameters in the presence of noisy input signals [Douglas, 
1995]. 
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10.6.2 Effect of β and Weight Tracks of REW Algorithm  
 Since we have a free parameter β  to choose, it would be worthwhile to explore the 
effect of β  on the parameter estimates. The SNR of the input signal is fixed at 0dB and –
10dB, the number of filter taps is set to 4 and the desired signal is noise free as before. 
We performed 100 Monte Carlo experiments and analyzed the average error vector norm 
values for 11 ≤≤− β . The results of the experiment are shown in Figure 10.10. Notice 
that there is a dip at 5.0−=β  (indicated by a “*” in the figure) and this clearly gives us 
the minimum estimation error. For 0=β , (indicated by a “o” in the figure) the REW 
algorithm reduces to the regular RLS giving a fairly significant estimation error. Next the 
parameter β  is set to –0.5 and SNR to 0dB, and the weight tracks are estimated for the 
two algorithms. Figure 10.11 shows the averaged weight tracks for both REW and RLS 
algorithms over 50 Monte Carlo trials. Asterisks on the plots indicate the true parameters. 
The tracks for the RLS algorithm are smoother, but they converge to wrong values, which 
we have observed quite consistently. The weight tracks for the REW algorithm are 
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noisier compared to those of the RLS, but they eventually converge to values very close 
to the true weights. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10.9. Histogram plots showing the normalized error vector norm for REW and 
RLS algorithms. 

(a) (b)
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Figure 10.10. Performance of REW algorithm (a) SNR = 0dB and (b) SNR = -10 over 

various beta values. 
Figure 10.11. Weight tracks for REW and RLS algorithms. 

 
 
 We have observed that the weight tracks for the REW algorithm can be quite noisy in 
the initial stages of adaptation. This may be attributed to the ill conditioning that is 
mainly caused by the smallest eigenvalue of the estimated Hessian matrix, which is 

)()( nn SR β+  for the REW algorithm. The same holds true for the RLS algorithm, where 
the minimum eigenvalue of  affects the sensitivity [Haykin, 1996]. The instability 
issues of the RLS algorithm during the initial stages of adaptation have been well studied 
in literature and effects of round off error have been analyzed and many solutions have 
been proposed to make the RLS algorithm robust to such effects [Haykin, 1996; Mueller, 
1981; Chansarkar & Desai, 1997]. Similar analysis on the REW algorithm is yet to be 
done and this would be addressed in future work on the topic. 
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10.7. STOCHASTIC GRADIENT ALGORITHMS 
 
 Stochastic gradient algorithms have been at the forefront in optimizing quadratic cost 
functions like the MSE. Owing to the presence of a global minimum in quadratic 
performance surfaces, gradient algorithms can elegantly accomplish the task of reaching 
the optimal solution at minimal computational cost. In this section, we will derive the 
stochastic gradient algorithms for the EWC. Since the EWC performance surface is a 
weighted sum of quadratics, we can expect that difficulties will arise. Assume that we 
have a noisy training data set of the form , where  is the input and 

 is the output of a linear system with coefficient vector w . The goal is to 
estimate the parameter vector  using the EWC. We know that the EWC cost function 
is given by, 

))(),(( ndnx mn ℜ∈)(x

Tℜ∈)(nd
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where, ,  is the estimate of the parameter vector and , the 
size of the input vector. For convenience, we will restate the following definitions, 

, , , , 

 and Q . Using these definitions, we can rewrite the cost 
function in (10.37) as, 

)()()( Lnenene −−=&

)()( Lnn −− xx )(nd&

)]()( ndnx [E=

w

d=

)(n

mL ≥

()(n Txx &&)(n =x&

[EP =

)()( Lndn −−

)](nd&&x

)]()([ nnE TxxR = )][ nES =
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It is easy to see that both  and  have parabolic performance surfaces as 
their Hessians have positive eigenvalues. However, the value of 

)]([ 2 neE )]([ 2 neE &

β  can invert the 
performance surface of . For )]([ 2 neE & 0>β , the stationary point is always a global 
minimum and the gradient of (10.38) can be written as the sum of the individual gradients 
as shown below. 
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The above gradient can be approximated by the stochastic instantaneous gradient by 
removing the expectation operators, 
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Thus we can write the weight update for the stochastic EWC-LMS algorithm for 0>β  
as, 
 

 ( ))()()()()()()1( nnennenηnn xxww &&β++=+  (10.41) 
 
where 0)( >nη  is a finite step-size parameter that controls convergence. For 0<β , the 
stationary point is still unique, but it can be a saddle point, global maximum or a global 
minimum. Evaluating the gradient as before and using the instantaneous gradient, we get 
the EWC-LMS algorithm for 0<β , 
 

 ( ))()()()()()()1( nnennennn xxww &&βη −+=+  (10.42) 
 
where, )(nη  is again a small step-size. However, there is no guarantee that the above 
update rules will be stable for all choices of step-sizes. Although, equations (10.41) and 
(10.42) are identical, we will use - β  in the update equation (10.42) to analyze the 
convergence of the algorithm specifically for 0<β . The reason for the separate analysis 
is that the convergence characteristics of (10.41) and (10.42) are very different.  
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Theorem 10.3. The stochastic EWC algorithms asymptotically converge in the mean to 
the optimal solution given by 
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(10.43) 

 
We will make the following mild assumptions typically applied to stochastic gradient 
algorithms [Haykin, 1996; Ljung, 1977; Kushner & Clark, 1978; Benveniste, Metivier, & 
Priouret, 1990] that can be easily satisfied.  
 
A.1 The input vectors x  are derived from at least a wide sense stationary (WSS) 

colored random signal with positive definite autocorrelation matrix 
 

)(n

)]()([ nnE TxxR =
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A.3 The sequence of weight vectors  is bounded with probability 1 )(nw
A.4 The update functions )()()()())(( nnennenh xxw &&β+=  for 0>β  and 

)(n 0)()()())(( nennenh xxw &&β−=  for <β  exist and are continuously differentiable 
with respect to , and their derivatives are bounded in time. )(nw

A.5 Even if  has some discontinuities a mean update vector ))(( nh w
( ) ( )()( nnh

n
w = )][lim hE w

∞→
 exists. 

 
Assumption A.1 is easily satisfied. A.2 requires that the input signal have sufficient 
correlation with itself for at least L  lags.  
 
10.7.1 Proof of EWC-LMS Convergence for β > 0 

We will first consider the update equation in (10.41) which is the stochastic EWC-
LMS algorithm for 0>β . Without loss of generality, we will assume that the input 
vectors  and their corresponding desired responses  are noise-free. The mean 
update vector 

)(nx )(nd
))(( nh w  is given by, 
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(10.44) 

 
The stationary point of the ordinary differential equation (ODE) in (10.44) is given by, 
 

  (10.45) ( ) ( QPSRw ββ ++= −1
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We will define the error vector at time instant n as ξ )()( * nn ww −= . Therefore, 
 

 )]()()()()[()()1( nnennennn xxξξ &&βη +−=+  (10.46) 
 
and the norm of the error vector at time n+1 is simply, 
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Imposing the condition that 22 )()1( nn ξξ <+

)(n
for all n, we get an upper bound on the 

time varying step-size parameter η  which is given by, 
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(10.48) 

 
Simplifying the above equation using the fact that ξ and )()()( nennT =x

)()()( nennT && =xξ , we get  
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(10.49) 

 
which is a more practical upper bound on the step-size as it can be directly estimated 
from the input and outputs. As an observation, we would like to say that if 0=β , then, 
the bound in (10.49) reduces to, 
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which, when included in the update equation, reduces to a variant of the Normalized 
LMS (NLMS) algorithm. In general, if the step-size parameter is chosen according to the 
bound given by (10.49), then the norm of the error vector  is a monotonically 

decreasing sequence converging asymptotically to zero, i.e., 

)(nξ

0)( 2 →nξ

*w

lim
∞→n

 which 

implies that . In addition, the upper bound on the step-size ensures that 

the weights are always bound with probability one satisfying the assumption A.3 we 
made before. Thus the weight vector w converges asymptotically to , which is the 
only stable stationary point of the ODE in (10.44). Note that (10.41) is an 

algorithm.  
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10.7.2 Proof of EWC-LMS Convergence for β < 0 

We analyze the convergence of the stochastic gradient algorithm for 0<β  in the 
presence of white noise because this is the relevant case ( 5.0−=β  eliminates the bias 
due to noise added to the input). From (10.42), the mean update vector ))(n(h w  is given 
by, 
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(10.51) 

As before, the stationary point of this ODE is, 
 
  ( ) ( QPSR ββ −−= −1

* )w  (10.52) 
 

The eigenvalues of Sβ−R  decide the nature of the stationary point. If they are all 
positive, then we have a global minimum and if they are all negative, we have a global 
maximum. In these two cases, the stochastic gradient algorithm in (10.42) with proper 
fixed sign step-size would converge to the stationary point, which would be stable. 
However, we know that the eigenvalues of SR β−  can also take both positive and 
negative values resulting in a saddle stationary point. Thus, the underlying dynamical 
system would have both stable and unstable modes making it impossible for the 
algorithm in (10.42) with fixed sign step-size to converge. This is well known in the 
literature [Haykin, 1994]. However, as will be shown next, this difficulty can be removed 
for our case by appropriately utilizing the sign of the update equation (remember that this 
saddle point is the only stationary point of the quadratic performance surface). The 
general idea is to use a vector step-size (one stepsize per weight) having both positive and 
negative values. One unrealistic way (for an on-line algorithm) to achieve this goal is to 
estimate the eigenvalues of Sβ−

)n

R . Alternatively, we can derive the conditions on the 
step-size for guaranteed convergence. As before, we will define the error vector at time 
instant n as ξ . The norm of the error vector at time instant n+1 is given 
by, 

()( *n ww −=
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(10.53) 

     
Taking the expectations on both sides, we get, 
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(10.54) 

 
The mean of the error vector norm will monotonically decay to zero over time i.e., 

22 )()1( nEnE ξξ <+  if and only if the step-size satisfies the following inequality. 
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 29



Let )()(~)( nnn vxx +=  and )()(~)( nundnd += , where )(~ nx  and )(~ nd  be the clean 
input and desired data respectively. We will further assume that the input noise vector 

 and the noise component in the desired signal u  to be uncorrelated. Also the 
noise signals are assumed to be independent of the clean input and desired signals. 
Furthermore, the lag 

)(nv )(n

L  is chosen to be more than m, the length of the filter under 
consideration. Since the noise is assumed to be purely white, 

 and . We have, 0)]( =nTv v([E)) − Ln ([)]( =− nELnT vv([E v V=)]v (nT)n
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Simplifying this further and taking the expectations, we get, 
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where, )](~)(~[~ nnE TxxR = , P  and )](~)(~[~ ndnE x=
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Similarly, we have, 
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Evaluating the expectations on both sides of (10.59) and simplifying, we obtain, 
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where, we have used the definitions , 

 and 
]))(~)(~))((~)(~[(~ TLnnLnnE −−−−= xxxxS
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Using (10.57) and (10.60) in equation (10.55), we get an expression for the upper bound 
on the step-size as, 
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(10.62) 

 
This expression is not usable in practice as an upper bound because it depends on the 
optimal weight vector. However, for 5.0−=β , the upper bound on the step-size reduces 
to, 
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From (10.58) and (10.61), we know that  and  are positive quantities. However, 

 can be negative. Also note that this upper bound is computed by 
evaluating the right hand side of (10.63) with the current weight vector . Thus as 
expected, it is very clear that the step-size at the n

MSEJ

ENT

ENTJ

ENTMSE JJ 5.0−
)(nw

th iteration can take either positive or 
negative values based on MSE JJ 5.0− ; therefore, sgn( ))(nη  must be the same as 

 evaluated at w . Intuitively speaking, the term  is 
the EWC cost computed with the current weights  and 

)ENT5.0sgn( MSE JJ − )(n ENTJJ 5.
5.

MSE 0−
)(nw 0−=β , which tells us 

where we are on the performance surface and the sign tells which way to go to reach the 
stationary point. It also means that the lower bound on the step-size is not positive as in 
traditional gradient algorithms. In general, if the step-size we choose satisfies (10.62), 
then, the mean error vector norm decreases asymptotically i.e., 22)1 < )(nEn ξ+(E ξ

*w
 

and eventually becomes zero, which implies that lim . Thus the weight 

vector converges asymptotically to , which is the only stationary point of the 
ODE in (10.51). We conclude that the knowledge of the eigenvalues is not needed to 
implement gradient descent in the EWC performance surface, but (10.63) is still not 
appropriate for a simple LMS type algorithm. 

)]([w →nE
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10.7.3 On-line Implementations of EWC-LMS for β < 0 

 As mentioned before, computing ENTMSE JJ 5.0−  at the current weight vector would 
require reusing the entire past data at every iteration. As an alternative, we can extract the 
curvature at the operating point and include that information in the gradient algorithm. By 
doing so, we obtain the following stochastic algorithm 
 

 [ ]( )( ))()()()()()()()(sgn)()1( nnennennnnηnn T xxwSRwww &&ββ −−+=+  (10.64) 
 
where,  and  are the estimates of )(nR )(nS R  and  respectively at the nS th time instant.  
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Corollary: Given any quadratic surface , the following gradient algorithm 
converges to its stationary point. 
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Proof: Without loss of generality, suppose that we are given a quadratic surface of the 
form , where , and .  is restricted to be symmetric; 
therefore, it is the Hessian matrix of this quadratic surface. The gradient of the 

performance surface with respect to the weights, evaluated at point  is 
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∂
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and the stationary point of  is the origin. Since the performance surface is quadratic, 
any cross-section passing through the stationary point is a parabola. Consider the cross-
section of  along the line defined by the local gradient that passes through the point 

. In general, the Hessian matrix of this surface can be positive or negative definite; it 
might as well have mixed eigenvalues. The unique stationary point of , which 
makes its gradient zero, can be reached by moving along the direction of the local 
gradient. The important issue is the selection of the sign, i.e., whether to move along or 
against the gradient direction to reach the stationary point. The decision can be made by 
observing the local curvature of the cross-section of  along the gradient direction. 
The performance surface cross-section along the gradient direction at  is, 
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From this, we deduce that the local curvature of the parabolic cross-section at  is 

. If the performance surface is locally convex, then this curvature is positive. 
If the performance surface is locally concave, this curvature is negative. Also, note that 

. Thus, the update equation with the curvature 
information in (10.65) converges to the stationary point of the quadratic cost function 

 irrespective of the nature of the stationary point.  
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From the above corollary and utilizing the fact that the matrix Sβ−R  is symmetric, 
we can conclude that the update equation in (10.64) asymptotically converges to the 
stationary point ( ) ( )QPSR ββ −−= −1

*

)( 2mO

w . On the down side however, the update 

equation in (10.64) requires  computations, which makes the algorithm unwieldy 
for real-world applications. Also, we can use the REW algorithm instead, which has a 
similar complexity.  

For an O algorithm, we have to go back to the update rule in (10.42). We will 
discuss only the simple case of 

)(m
5.0−=β , which turns out to be also the more useful. We 

propose to use an instantaneous estimate of the sign with the current weights given by  
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where, where 0)( >nη  and is bound by (10.63). It is possible to make mistakes in the 
sign estimation when (10.67) is utilized, which will not affect the convergence in the 
mean, but will penalize the misadjustment. The argument that misadjustment will be 
more for the EWC algorithm in (10.67) than the standard LMS algorithm is currently 
under investigation.   

 
10.7.4 Estimation of System Parameters in White Noise 

The experimental setup is the same as the one we used to test the REW algorithm. We 
varied the Signal-to-Noise-Ratio (SNR) between –10dB to +10dB and changed the 
number of filter parameters from 4 to 12. We set 5.0−=β  and used the update equation 
in (10.67) for the EWC-LMS algorithm. A time varying step-size magnitude was chosen 
in accordance with the upper bound given by (10.63) without the expectation operators. 
This greatly reduces the computational burden but makes the algorithm noisier. However, 
since we are using 50,000 samples for estimating the parameters, we can expect the errors 
to average out over iterations. For the LMS algorithm, we chose the step-size that gave 
the least error in each trial. Totally 100 Monte Carlo trials were performed and 
histograms of normalized error vector norms were plotted. Figure 10.12 shows the error 
histograms for both LMS and EWC-LMS algorithms. EWC-LMS algorithm performs 
significantly better than the LMS algorithm at low SNR values. Their performances are 
on par for SNRs greater than 20dB. Figure 10.13 shows a sample comparison between 
the stochastic and the recursive algorithms for 0dB SNR and 4 filter taps. Interestingly, 
the performance of the EWC-LMS algorithm is better than the REW algorithm in the 
presence of noise. Similarly, the LMS algorithm is much better than the RLS algorithm. 
This tells us that the stochastic algorithms reject more noise than the fixed-point 
algorithms. Researchers have made this observation before, although no concrete 
arguments exist to account for the smartness of the adaptive algorithms [Reuter, Quirk, 
Zeidler, & Milstein, 2000]. Similar conclusions can be drawn in our case for EWC-LMS 
and REW. 

 
10.7.5  Weight Tracks and Convergence  

The steady state performance of a stochastic gradient algorithm is a matter of great 
importance. We will now experimentally verify the steady state behavior of the EWC-
LMS algorithm. The SNR of the input signal is set to 10dB and the number of filter taps 
is fixed to two for display convenience. Figure 10.14 shows the contour plot of the EWC 
cost function with noisy input data. Clearly, the Hessian of this performance surface has 
both positive and negative eigenvalues thus making the stationary point an undesirable 
saddle point. On the same plot, we have shown the weight tracks of the EWC-LMS 
algorithm in (10.67) with 5.0−=β . Also, we used a fixed value of 0.001 for the step-
size. From the figure, it is clear that the EWC-LMS algorithm converges stably to the 
saddle point solution, which is theoretically unstable when a single sign step-size is used. 
Notice that due to the constant step-size, there is misadjustment in the final solution. 
Although no analytical expressions for misadjustments are derived in this chapter, we  
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Figure 10.12. Histogram plots showing the normalized error vector norm for EWC-LMS 
and LMS algorithms 
 

 
Figure 10.13. Comparison of stochastic versus recursive algorithms 
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Figure 10.14. Contour plot with weight tracks   Figure 10.15. Weight tracks 
 

have done some preliminary work on estimating the misadjustment and excess-error for 
EWC-LMS [Rao, Erdogmus, & Principe, 2002; Erdogmus, Rao, & Principe, 2002]. 

In Figure 10.15, we show the individual weight tracks for the EWC-LMS algorithm. 
The weights converge to the vicinity of the true filter parameters, which are -0.2 and 0.5 
respectively within 1000 samples. In order to see if the algorithm in (10.67) converges to 
the saddle point solution in a robust manner, we ran the same experiment using different 
initial conditions on the contours. Figure 10.16 shows a few plots of the weight tracks 
originating from different initial values over the contours of the performance surface. In 
every case, the algorithm converged to the saddle point in a stable manner. Note that the 
misadjustment in each case is almost the same. Finally, in order to see the effect of 
reducing the SNR, we repeated the experiment with 0dB SNR. Figure 10.17 (left) shows 
the weight tracks over the contour and we can see that there is more misadjustment now. 
However, we have observed that by using smaller step-sizes, the misadjustment can be 
controlled to be within acceptable values. Figure 10.17 (right) shows the weight tracks 
when the algorithm is used without the sign information for the step-size. Note that 
convergence is not achieved in this case which substantiates our previous argument that a 
fixed sign step-size will never converge to a saddle point.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 10.16. Contour plot with weight tracks for different initial values for the weights.  
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Figure 10.17. Contour plot with weight tracks for EWC-LMS algorithm with sign 
information (left) and without sign information (right) (0dB SNR and 2 filter taps case). 
 
 
10.8. SUMMARY AND DISCUSSION 
 
 MSE has been the criterion of choice in many function approximation tasks including 
adaptive filter optimization. There are alternatives and enhancements to MSE that have 
been proposed in order to improve the robustness of learning algorithms in the presence 
of noisy training data. In FIR filter adaptation, noise present in the input signal is 
especially problematic since MSE cannot eliminate this factor. A powerful enhancement 
technique, total least squares, on one hand, fails to work if the noise levels in the input 
and output signals are not identically equal. The alternative method of subspace Wiener 
filtering, on the other hand, requires the noise power to be strictly smaller than the signal 
power to improve SNR. 
 We have proposed in this chapter an extension to the traditional MSE criterion in 
filter adaptation, which we have named the error-whitening criterion. This new cost 
function is inspired from the observations made on the properties of the error 
autocorrelation function. Specifically, we have shown that using non-zero lags of the 
error autocorrelation function, it is possible to obtain unbiased estimates of the model 
parameters even in the presence of white noise on the training data. 
 The new EWC criterion offers a parametric family of optimal solutions. The classical 
Wiener solution remains a special case corresponding to the choice 0=β , whereas total 
noise rejection is achieved for the special choice of 2/1−=β . We have shown that the 
optimal solution yields an error signal uncorrelated with the predicted next value of the 
input vector, based on analogies with Newtonian mechanics of motion. On the other 
hand, the relationship with entropy through the stochastic approximation reveals a clearer 
understanding of the behavior of this optimal solution; the true weight vector that 
generated the training data marks the lags at which the error autocorrelation will become 
zero. We have exploited this fact to optimize the adaptive filter weights without being 
affected by noise. 

The theoretical analysis has also been complemented by on-line algorithms that 
search on a sample by sample basis the optimum of the EWC. We have shown that the 
EWC may have a maximum, a minimum or a saddle point solution for the more 
interesting case of 0<β . Searching such surfaces brings difficulties for gradient descent, 
but search methods that use the information of the curvature work without difficulty. We 
have presented a recursive algorithm to find the optimum of the EWC, which is called the 
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REW. The REW has the same structure and complexity as the RLS algorithm.  We also 
presented two gradient-based algorithms to search the EWC function: one that includes 
the curvature at the operating point, but that it has the same complexity as the REW, and 
is therefore uninteresting computationally. The other algorithm, which we called EWC-
LMS has complexity O  and requires the estimation of the sign of the update for the 
case

)(m
5.0−=β . We have estimated the sign using the instantaneous estimate of the cost of 

the two independent functions (related to the error and its derivative). This procedure 
does not affect the convergence of the algorithm in the mean, but may affect the 
misadjustment. However this analysis is left for further research.  

− ex ((=e N
xf 1)(ˆ

All in all, we have introduced a new class of Wiener type filter (the EWWF) that is 
able to find the optimal weights when the input data (generated by an MA process) is 
corrupted by additive white noise. We further develop a practical sample-by-sample 
fixed-point algorithm (REW) similar to RLS, and one gradient based algorithm (EWC-
LMS) similar to LMS. This new class of Wiener filters represents a major advantage in 
many real world applications of importance in signal processing, controls and 
bioengineering. We studied here the simplest of this class of cost functions, where only 
one extra term (the first derivative) in the error vector is included. It will be important to 
characterize the advantages of using higher order Taylor series in the error vector in other 
applications such as correlated additive noise case, non-stationary data and modeling of 
ARMA systems. In parallel, further research on the gradient-based algorithms is also 
warranted. But this paper presents sufficient detail at the theoretical and algorithmic 
levels to enable immediate applications to real data.  
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APPENDIX A 
 
 This appendix aims to motivate an understanding of the relationship between entropy 
and sample differences. In general, the parametric family describing the error pdf in 
supervised learning is not analytically available. In such circumstances, non-parametric 
approaches such as Parzen windowing [Parzen, 1967] could be employed. Given the iid 
samples {e(1),…,e(N) } of a random variable e, the Parzen window estimate for the 
underlying pdf fe(.) is obtained by 
 

   ∑
=

N

i
i

1
))σκ  (A.1) 

 
where κσ(.) is the kernel function, which itself is a pdf, and σ is the kernel size that 
controls the width of each window. Typically, Gaussian kernels are preferred, but other 
kernel functions like the Cauchy density or the members of the generalized Gaussian 
family can be employed.  
 Shannon’s entropy for a random variable e with pdf fe(.) is defined as [Shannon & 
Weaver, 1964] 
 

 37



  (A.2) )]([)(log)()( efEdxxfxfeH eeee −=−= ∫
∞

∞−
 
Given iid samples, this entropy could be estimated using [Erdogmus, 2002] 
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This estimator uses the sample mean approximation for the expected value and the 
Parzen window estimator for the pdf. Viola proposed a similar entropy estimator, in 
which he suggested dividing the samples into two subsets: one for estimating the pdf, the 
other for evaluating the sample mean [Viola, Schraudolph, & Sejnowski, 1995]. In order 
to approximate a stochastic entropy estimator, we approximate the expectation by 
evaluating the argument at the most recent sample, ek. In order to estimate the pdf, we use 
the L previous samples. The stochastic entropy estimator then becomes 
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For supervised training of an ADALINE (or an FIR filter), with weight vector w , 
given the input (vector)-desired training sequence (x(n),d(n)), where  and 

, the instantaneous error is given by . The stochastic 
gradient of the error entropy with respect to the weights becomes 
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where  is also evaluated using the same weight vector 
as e(n) [Erdogmus, 2002]. For the specific choice of a single error sample e(k-L) for pdf 
estimation and a Gaussian kernel function, (A.5) reduces to 

)()()()( innindine T −−−=− xw

 

 ( 2/)()())()(()( σLnnLneneXH
−−−−−=

∂
∂ xx

w
)  (A.6) 

 
We easily notice that the expression in (A.6) is also a stochastic gradient for the cost 
function .    )2/(]))()([( 22 σLneneEJ −−=
 
APPENDIX B 
 
 Consider the correlation matrices R, S, P, and Q estimated from noisy data. For R, 
we write 

 38



 

VRvvxx

vvxvvxxx

vxvxxxR

+=+=

+++=

++==

~)]()()(~)(~[

)]()()()()()(~)(~)(~[

]))()(~))(()(~[()]()([

nnnnE

nnnnnnnnE

nnnnEnnE

TT

TTTT

TT

 (B.1) 

 
For S, we obtain 
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Similarly, for P and Q we get 
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APPENDIX C 
  
 Recall that the optimal solution of EWC satisfies (10.9), which is equivalently 
  
 0))]()()()(()()()21[( =++−−+ LnneLnnenneE xxx ββ  (C.1) 
 
Rearranging the terms in (C.1), we obtain 
  
 0)))]()(2)(()()(([ =−−−+− LnnLnnneE xxxx β  (C.2) 
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Notice that the combination of x-values that multiply β form an estimate of the 
acceleration of the input vector x(n). Specifically for 2/1−=β , the term that multiplies 
e(n) becomes a single-step prediction for the input vector x(n) (assuming zero velocity 
and constant acceleration), according to Newtonian mechanics. Thus, the optimal 
solution of the EWC criterion tries decorrelating the error signal from the predicted next 
input vector. 
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